

A181969


Primegenerating polynomial: 16*n^2  292*n + 1373.


2



1373, 1097, 853, 641, 461, 313, 197, 113, 61, 41, 53, 97, 173, 281, 421, 593, 797, 1033, 1301, 1601, 1933, 2297, 2693, 3121, 3581, 4073, 4597, 5153, 5741, 6361, 7013, 7697, 8413, 9161, 9941, 10753, 11597, 12473, 13381, 14321, 15293, 16297, 17333, 18401
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

The polynomial generates 31 primes in row starting from n=0.
The polynomial 16*n^2  668*n + 7013 generates the same primes in reverse order.
Note: all the polynomials of the form p^2*n^2 + p*n + 41, p^2*n^2 + 3*p*n + 43, p^2*n^2 + 5*p*n + 47, ..., p^2*n^2 + (2k+1)*p*n + q, ..., p^2*n^2 + 79*p*n + 1601, where q is a (prime) term of the Euler polynomial q = k^2 + k + 41, from k=0 to k=39, have their discriminant equal to 163*p^2; the demonstration is easy: the discriminant is equal to b^2  4ac = (2k+1)^2*p^2  4*q*p^2 =  p^2 ((2k+1)^2  4q) =  p^2*(4k^2 + 4k + 1  4k^2  4k  164) = 163*p^2.
Observation: many of the polynomials formed this way have the capacity to generate many primes in row. Examples:
9n^2 + 3n + 41 generates 27 primes in row starting from n=0 (and 40 primes for n = n13);
9n^2  237n + 1601 generates 27 primes in row starting from n=0;
16n^2 + 4n + 41 generates, for n = n21 (that is 16n^2  668n + 7013) 31 primes in row.


LINKS

Bruno Berselli, Table of n, a(n) for n = 0..1000
M. Coman, Ten primegenerating quadratic polynomials, Preprint 2015.
Factor Database, Factorizations of 16n^2292n+1373.
Index entries for linear recurrences with constant coefficients, signature (3,3,1).


FORMULA

G.f.: (13733022*x+1681*x^2)/(1x)^3.  Bruno Berselli, Apr 06 2012


MATHEMATICA

Table[16*n^2  292*n + 1373, {n, 0, 50}] (* T. D. Noe, Apr 04 2012 *)


PROG

(MAGMA) [n^273*n+1373: n in [0..172 by 4]]; // Bruno Berselli, Apr 06 2012
(PARI) a(n)=16*n^2292*n+1373 \\ Charles R Greathouse IV, Jun 17 2017


CROSSREFS

Sequence in context: A031535 A031715 A135819 * A139414 A155925 A329917
Adjacent sequences: A181966 A181967 A181968 * A181970 A181971 A181972


KEYWORD

nonn,easy


AUTHOR

Marius Coman, Apr 04 2012


EXTENSIONS

Offset changed from 1 to 0 by Bruno Berselli, Apr 06 2012


STATUS

approved



