login
A181968
54n^3 - 1.
1
53, 431, 1457, 3455, 6749, 11663, 18521, 27647, 39365, 53999, 71873, 93311, 118637, 148175, 182249, 221183, 265301, 314927, 370385, 431999, 500093, 574991, 657017, 746495, 843749, 949103, 1062881, 1185407, 1317005, 1457999, 1608713, 1769471, 1940597, 2122415
OFFSET
1,1
COMMENTS
a(n) is coprime to 27*n^3*(27*n^3 - 1) - 2 = A016767(n)*(A016767(n)-1) - 2.
x^3 + y^3 + z^3 = w^3 has infinitely many solutions, where every pair of elements x, y and z are coprime.
This follows from the identity a(n)^3 + (A016767(n)+1)^3 + (A016768(n)-A008588(n))^3 = (A016768(n)+A008585(n))^3 for n >= 1.
REFERENCES
Wacław Sierpiński, Czym sie zajmuje teoria liczb. Warsaw: PW "Wiedza Powszechna", 1957, pp. 59-60.
FORMULA
For n >= 1, a(n) = 54*A000578(n) - 1 = 2*A016767(n) - 1.
G.f.: (-1 + 57*x + 213*x^2 + 55*x^3)/(1 - x)^4.
MAPLE
seq(54*n^3-1, n=1..34);
MATHEMATICA
Table[54*n^3 - 1, {n, 34}]
PROG
(Magma) [ 54*n^3-1 : n in [1..34]]
(PARI) vector(34, n, 54*n^3-1)
CROSSREFS
Sequence in context: A142851 A185239 A053736 * A261537 A142209 A322043
KEYWORD
easy,nonn
AUTHOR
STATUS
approved