The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A181924 Area A of the triangles such that A, the sides, and one of the medians are integers. 4
 12, 24, 48, 60, 96, 108, 120, 168, 192, 216, 240, 300, 336, 360, 384, 420, 432, 480, 540, 588, 600, 660, 672, 720, 768, 840, 864, 960, 972, 1008, 1080, 1092, 1176, 1200, 1260, 1320, 1344, 1440, 1452, 1500, 1512, 1536, 1680, 1728, 1848, 1920, 1944, 1980 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Using Heron's formula for the area A of a triangle with sides (a, b, c), the existence of a triangle with three rational medians and integer (or rational) area implies a solution of the Diophantine system: 4x^2 = 2a^2 + 2b^2 - c^2 4y^2 = 2a^2 + 2c^2 - b^2 4z^2 = 2b^2 + 2c^2 - a^2 A^2 = s(s-a)(s-b)(s-c) where s = (a+b+c)/2 is the semiperimeter and x, y, z the medians. There is no solution known to this system at this time. The problem is similar to the more famous unsolved problem of finding a box with edges, face diagonals and body diagonals all rational. Such a box also involves seven quantities which must satisfy a system of four Diophantine equations: d^2 = a^2 + b^2; e^2 = a^2 + c^2; f^2 = b^2 + c^2; g^2 = a^2 + b^2 + c^2 where a, b and c are the lengths of the edges (see Guy in the reference). But there exists Heron triangles with two integer medians, for example the triangle (a,b,c) = (52, 102, 146) => A = 1680 and m1 = 4*sqrt(949), m2 = 97 and m3 = 35. Properties of this sequence: There exist three class of triangles (a, b, c): (i) A class of isosceles triangles where a = b < c => the median m = 2*A/c; (ii) A class of Pythagorean where a^2 + b^2 = c^2, and it is easy to check that the median m = c/2. (iii) A class of non-isosceles and non-Pythagorean triangles (a,b,c) having one or two integer medians. REFERENCES Ralph H. Buchholz and Randall L. Rathbun, An infinite set of Heron triangles with two rational medians, Newcastle University, Newcastle, Jan 1997. Ralph H. Buchholz, On triangles with rational altitudes, angles bisectors or medians, PHD Thesis, University of Newcastle, Nov 1989. LINKS Ray Chandler, Table of n, a(n) for n = 1..144 Andrew Bremner and Richard K. Guy, A Dozen Difficult Diophantine Dilemmas, American Mathematical Monthly 95(1988) 31-36. Eric W. Weisstein, MathWorld: HeronianTriangle EXAMPLE 336 is in the sequence, because for the sides (14,48,50), A = sqrt(56*(56-14)*(56-48)*(56-50)) = sqrt(112896) = 336, and m = sqrt(2a^2 + b^2 - c^2)/2 = sqrt(2*14^2 + 2*48^2 - 50^2)/2 = 25. MAPLE with(numtheory):T:=array(1..1000):k:=0:nn:=300:for a from 1 to nn do: for b from a to nn do: for c from b to nn do:p:=(a+b+c)/2:s:=p*(p-a)*(p-b)*(p-c):if s>0 then s1:=sqrt(s): m11:=sqrt((2*b^2+2*c^2-a^2)/4): m22:=sqrt((2*c^2+2*a^2-b^2)/4): m33:=sqrt((2*a^2+2*b^2-c^2)/4):if s1=floor(s1) and (m11=floor(m11) or m22=floor(m22) or m33=floor(m33))  then k:=k+1:T[k]:=s1:else fi:fi:od:od:od: L := [seq(T[i], i=1..k)]:L1:=convert(T, set):A:=sort(L1, `<`): print(A): MATHEMATICA nn = 300; lst = {}; Do[s = (a + b + c)/2; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); m1=(2*b^2+2*c^2-a^2)/4; m2=(2*c^2+2*a^2-b^2)/4; m3=(2*a^2+2*b^2-c^2)/4; If[0 < area2 && IntegerQ[Sqrt[area2]] && (IntegerQ[(Sqrt[m1])] || IntegerQ[(Sqrt[m2])] || IntegerQ[(Sqrt[m3])]), AppendTo[lst, Sqrt[area2]]]], {a, nn}, {b, a}, {c, b}]; Union[lst] CROSSREFS Sequence in context: A190566 A213739 A102067 * A270257 A180617 A081808 Adjacent sequences:  A181921 A181922 A181923 * A181925 A181926 A181927 KEYWORD nonn AUTHOR Michel Lagneau, Apr 02 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 18 03:33 EST 2020. Contains 332006 sequences. (Running on oeis4.)