OFFSET
1,3
COMMENTS
Terms with odd index, that is, a(1), a(3), a(5), ... are all multiples of 10. Each even-index term is one more than its predecessor, so that a(2n) = a(2n-1) + 1. [Douglas Latimer, Apr 26 2013]
LINKS
Douglas Latimer, Table of n, a(n) for n = 1..850
EXAMPLE
The number 11 is represented in the binary system by the string "1011". 11 is a two-digit number, so we consider the 2 least significant bits, which are "11", identical to the string of digits used to represent the number 11. Thus 11 is in the sequence.
MATHEMATICA
fQ[n_] := Module[{d = IntegerDigits[n], len}, len = Length[d]; d == Take[IntegerDigits[n, 2], -len]]; Select[Range[0, 1000000], fQ] (* T. D. Noe, Apr 03 2012 *)
PROG
(PARI) {for(vv=0, 200, bvv=binary(vv);
ll=length(bvv); texp=0; btod=0;
forstep(i=ll, 1, -1, btod=btod+bvv[i]*10^texp; texp++);
bigb=binary(btod); lbb=length(bigb); swsq=1;
forstep(j=ll, 1, -1, if(bvv[j]!=bigb[lbb], swsq=0); lbb--);
if(swsq==1, print(btod)))}
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Douglas Latimer, Mar 30 2012
STATUS
approved