login
A181883
The sums of pairs of adjacent terms are the odd palindromic primes in ascending order.
3
0, 3, 2, 5, 6, 95, 36, 115, 66, 125, 188, 165, 208, 175, 552, 205, 582, 215, 704, 225, 10076, 425, 10176, 1135, 10276, 2145, 10576, 2245, 11086, 2745, 11186, 3155, 11586, 3865, 11686, 4375, 11986, 4575, 12086, 5385, 12586, 5595
OFFSET
1,2
COMMENTS
This sequence was originally presented at http://www.sanaristikot.net by V.J. Pohjola, Nov 11 2010. [Added by V.J. Pohjola, Nov 25 2010.]
There are four possible solutions: see A181881-A181884.
LINKS
V. J. Pohjola, a(n)+a(n+1) = palindromic prime, Posting to the Sequence Fans Mailing List, Nov 11 2010.
MATHEMATICA
lst = {}; a = 0; c = 2; Label[alku1]; b = c; Label[alku2]; b =b + 1; If[PrimeQ[a + b] && IntegerDigits[a + b] == Reverse[IntegerDigits[a + b]], AppendTo[lst, a], Goto[alku2]]; c = a; a = b; If[a < nn, Goto[alku1]]; lst (* V.J. Pohjola, Nov 25 2010 *)
a[1] = 0; pp = Select[Prime[Range[3000]], PalindromeQ]; lp = Length[pp]-1;
aa = Table[a[n] + a[n+1], {n, lp}]; Array[a, lp] /. Solve[Thread[aa == Rest[pp]]][[1]] (* Jean-François Alcover, Feb 17 2018 *)
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
N. J. A. Sloane, Nov 18 2010
EXTENSIONS
More terms from Nathaniel Johnston, Nov 22 2010
STATUS
approved