

A181880


Expansion of 1/(14*x3*x^2x^3).


5



1, 4, 19, 89, 417, 1954, 9156, 42903, 201034, 942001, 4414009, 20683073, 96916320, 454128508, 2127946065, 9971086104, 46722311119, 218930448853, 1025859814873, 4806952917170, 22524321562152, 105544004814991, 494555936863590, 2317380083461485, 10858732149251701, 50881624784254849, 238420075668235984, 1117183909174960184, 5234877488488803537, 24529481757148330684
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

B(n):=a(n2)*(1)^n, B(0):=0, B(1):=0, (o.g.f. x^2/(1 + 4*x + 3*x^2 x^3))appears in the following formula for the nonpositive powers of rho*sigma, where rho:=2*cos(Pi/7) and sigma:=sin(3*Pi/7)/sin(Pi/7) = rho^21 are the ratios of the smaller and larger diagonal length to the side length in a regular 7gon (heptagon). See the Steinbach reference where the basis <1,rho,sigma> is used in an extension of the rational field. (rho*sigma)^(n) = C(n) + B(n)*rho + A(n)*sigma,n>=0, with C(n)= A085810(n)*(1)^n, and A(n)= A116423(n+1)*(1)^(n+1). For the nonnegative powers see A120757(n), A122600(n1) and A181879(n), respectively. See also a comment under A052547.


LINKS

Table of n, a(n) for n=0..29.
P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 2231.
Index entries for linear recurrences with constant coefficients, signature (4, 3, 1).


FORMULA

O.g.f.: 1/(14*x3*x^2x^3).
a(n) = 4*a(n) + 3*a(n2) +a(n3), n>=2, a(1):=0, a(0)=1, a(1)=4.


MATHEMATICA

CoefficientList[Series[1/(14*x3*x^2x^3), {x, 0, 40}], x] (* or *) LinearRecurrence[{4, 3, 1}, {1, 4, 19}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2012 *)


CROSSREFS

Sequence in context: A084155 A015530 A256959 * A291016 A010907 A229242
Adjacent sequences: A181877 A181878 A181879 * A181881 A181882 A181883


KEYWORD

nonn,easy


AUTHOR

Wolfdieter Lang, Nov 27 2010


STATUS

approved



