login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A181878 Coefficient array for square of Chebyshev S-polynomials. 4
1, 1, 1, -2, 1, 4, -4, 1, 1, -6, 11, -6, 1, 9, -24, 22, -8, 1, 1, -12, 46, -62, 37, -10, 1, 16, -80, 148, -128, 56, -12, 1, 1, -20, 130, -314, 367, -230, 79, -14, 1, 25, -200, 610, -920, 771, -376, 106, -16, 1, 1, -30, 295, -1106, 2083, -2232, 1444, -574, 137, -18, 1, 36, -420, 1897, -4352, 5776, -4744, 2486, -832, 172, -20, 1, 1, -42, 581, -3108, 8518, -13672, 13820, -9142, 4013, -1158, 211, -22, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

For the coefficients of Chebyshev polynomials S(n,x) see A049310.

The row length sequence for this array is A109613=[1,1,3,3,5,5,...].

The row polynomials (in x^2) for even row numbers are

  S(2*k,x)^2 = sum(a(2*k,m)*x^(2*m),m=0..2*k), k>=0.

  For odd row numbers the row polynomials (in x^2) are

  (S(2*k+1,x)^2)/x^2 = sum(a(2*k+1,m)*x^(2*m),m=0..2*k), k>=0.

The o.g.f. for the polynomials S(n,x)^2 is

  S(x,z):=((1+z)/(1-z))/(1 + (2-x^2)z +z^2). See the link for a proof. Therefore the coefficients constitute the Riordan array (1/(1-x^2),x/(1+x)^2) found as A158454.

The o.g.f. for (S(2*k,sqrt(x))^2 is

  (1-2(1-x)z+z^2)/((1-z)*(1 - (2-4x+x^2)z + z^2)).

The o.g.f. for ((S(2*k+1,sqrt(x))^2)/x is

  ((1+z)/(1-z))/(1 - (2-4x+x^2)z + z^2).

The row sums A011655(n+1) are the same as those for the triangle A158454.

The alternating row sums for even numbered rows ((-1)^n)*A007598(n+1) coincide with those of triangle A158454. For odd row numbers n=2k+1 these sums are A049684(k+1), k>=0 (squares of even indexed Fibonacci numbers).

LINKS

Table of n, a(n) for n=0..84.

Wolfdieter Lang, First ten rows with more details and proofs.

FORMULA

a(2*k,m) = ((-1)^m)*sum(binomial(2*k+m-1-2*j,2*m-1),j=0..k), k>=0.

a(2*k+1,m) = ((-1)^m)*sum(binomial(2*k+1+m-2*j,2*m+1),j=0..k), k>=0.

This derives from the formula for the entries of the Riordan array A158454.

For the o.g.f.s see the comment.

EXAMPLE

The irregular triangle a(n,m) begins:

n\m  0    1    2      3     4      5     6    7   8   9  10 ...

0:   1

1:   1

2:   1   -2    1

3:   4   -4    1

4:   1   -6   11     -6     1

5:   9  -24   22     -8     1

6:   1  -12   46    -62    37    -10     1

7:  16  -80  148   -128    56    -12     1

8:   1  -20  130   -314   367   -230    79  -14   1

9:  25 -200  610   -920   771   -376   106  -16   1

10:  1  -30  295  -1106  2083  -2232  1444 -574 137 -18   1

... Reformatted and extended by Wolfdieter Lang, Nov 24 2012

CROSSREFS

Cf. A158454, A129818.

Sequence in context: A004175 A136756 A214670 * A256791 A274980 A274826

Adjacent sequences:  A181875 A181876 A181877 * A181879 A181880 A181881

KEYWORD

sign,easy,tabf

AUTHOR

Wolfdieter Lang, Dec 22 2010

EXTENSIONS

Corrected by Wolfdieter Lang, Jan 21 2011.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 23:55 EST 2016. Contains 278902 sequences.