login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A181878 Coefficient array for square of Chebyshev S-polynomials. 4
1, 1, 1, -2, 1, 4, -4, 1, 1, -6, 11, -6, 1, 9, -24, 22, -8, 1, 1, -12, 46, -62, 37, -10, 1, 16, -80, 148, -128, 56, -12, 1, 1, -20, 130, -314, 367, -230, 79, -14, 1, 25, -200, 610, -920, 771, -376, 106, -16, 1, 1, -30, 295, -1106, 2083, -2232, 1444, -574, 137, -18, 1, 36, -420, 1897, -4352, 5776, -4744, 2486, -832, 172, -20, 1, 1, -42, 581, -3108, 8518, -13672, 13820, -9142, 4013, -1158, 211, -22, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

For the coefficients of Chebyshev polynomials S(n,x) see A049310.

The row length sequence for this array is A109613=[1,1,3,3,5,5,...].

The row polynomials (in x^2) for even row numbers are

  S(2*k,x)^2 = sum(a(2*k,m)*x^(2*m),m=0..2*k), k>=0.

  For odd row numbers the row polynomials (in x^2) are

  (S(2*k+1,x)^2)/x^2 = sum(a(2*k+1,m)*x^(2*m),m=0..2*k), k>=0.

The o.g.f. for the polynomials S(n,x)^2 is

  S(x,z):=((1+z)/(1-z))/(1 + (2-x^2)z +z^2). See the link for a proof. Therefore the coefficients constitute the Riordan array (1/(1-x^2),x/(1+x)^2) found as A158454.

The o.g.f. for (S(2*k,sqrt(x))^2 is

  (1-2(1-x)z+z^2)/((1-z)*(1 - (2-4x+x^2)z + z^2)).

The o.g.f. for ((S(2*k+1,sqrt(x))^2)/x is

  ((1+z)/(1-z))/(1 - (2-4x+x^2)z + z^2).

The row sums A011655(n+1) are the same as those for the triangle A158454.

The alternating row sums for even numbered rows ((-1)^n)*A007598(n+1) coincide with those of triangle A158454. For odd row numbers n=2k+1 these sums are A049684(k+1), k>=0 (squares of even indexed Fibonacci numbers).

LINKS

Table of n, a(n) for n=0..84.

Wolfdieter Lang, First ten rows with more details and proofs.

FORMULA

a(2*k,m) = ((-1)^m)*sum(binomial(2*k+m-1-2*j,2*m-1),j=0..k), k>=0.

a(2*k+1,m) = ((-1)^m)*sum(binomial(2*k+1+m-2*j,2*m+1),j=0..k), k>=0.

This derives from the formula for the entries of the Riordan array A158454.

For the o.g.f.s see the comment.

EXAMPLE

The irregular triangle a(n,m) begins:

n\m  0    1    2      3     4      5     6    7   8   9  10 ...

0:   1

1:   1

2:   1   -2    1

3:   4   -4    1

4:   1   -6   11     -6     1

5:   9  -24   22     -8     1

6:   1  -12   46    -62    37    -10     1

7:  16  -80  148   -128    56    -12     1

8:   1  -20  130   -314   367   -230    79  -14   1

9:  25 -200  610   -920   771   -376   106  -16   1

10:  1  -30  295  -1106  2083  -2232  1444 -574 137 -18   1

... Reformatted and extended by Wolfdieter Lang, Nov 24 2012

CROSSREFS

Cf. A158454, A129818.

Sequence in context: A004175 A136756 A214670 * A129862 A137593 A009949

Adjacent sequences:  A181875 A181876 A181877 * A181879 A181880 A181881

KEYWORD

sign,easy,tabf

AUTHOR

Wolfdieter Lang, Dec 22 2010

EXTENSIONS

Corrected by Wolfdieter Lang, Jan 21 2011.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 22 00:41 EST 2014. Contains 252326 sequences.