login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A181878 Coefficient array for square of Chebyshev S-polynomials. 5
1, 1, 1, -2, 1, 4, -4, 1, 1, -6, 11, -6, 1, 9, -24, 22, -8, 1, 1, -12, 46, -62, 37, -10, 1, 16, -80, 148, -128, 56, -12, 1, 1, -20, 130, -314, 367, -230, 79, -14, 1, 25, -200, 610, -920, 771, -376, 106, -16, 1, 1, -30, 295, -1106, 2083, -2232, 1444, -574, 137, -18, 1, 36, -420, 1897, -4352, 5776, -4744, 2486, -832, 172, -20, 1, 1, -42, 581, -3108, 8518, -13672, 13820, -9142, 4013, -1158, 211, -22, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

For the coefficients of Chebyshev polynomials S(n,x) see A049310.

The row length sequence for this array is A109613=[1,1,3,3,5,5,...].

The row polynomials (in x^2) for even row numbers are

  S(2*k,x)^2 = sum(a(2*k,m)*x^(2*m),m=0..2*k), k>=0.

  For odd row numbers the row polynomials (in x^2) are

  (S(2*k+1,x)^2)/x^2 = sum(a(2*k+1,m)*x^(2*m),m=0..2*k), k>=0.

The o.g.f. for the polynomials S(n,x)^2 is

  S(x,z):=((1+z)/(1-z))/(1 + (2-x^2)z +z^2). See the link for a proof. Therefore the coefficients constitute the Riordan array (1/(1-x^2),x/(1+x)^2) found as A158454.

The o.g.f. for (S(2*k,sqrt(x))^2 is

  (1-2(1-x)z+z^2)/((1-z)*(1 - (2-4x+x^2)z + z^2)).

The o.g.f. for ((S(2*k+1,sqrt(x))^2)/x is

  ((1+z)/(1-z))/(1 - (2-4x+x^2)z + z^2).

The row sums A011655(n+1) are the same as those for the triangle A158454.

The alternating row sums for even numbered rows ((-1)^n)*A007598(n+1) coincide with those of triangle A158454. For odd row numbers n=2k+1 these sums are A049684(k+1), k>=0 (squares of even indexed Fibonacci numbers).

LINKS

Table of n, a(n) for n=0..84.

Wolfdieter Lang, First ten rows with more details and proofs.

FORMULA

a(2*k,m) = ((-1)^m)*sum(binomial(2*k+m-1-2*j,2*m-1),j=0..k), k>=0.

a(2*k+1,m) = ((-1)^m)*sum(binomial(2*k+1+m-2*j,2*m+1),j=0..k), k>=0.

This derives from the formula for the entries of the Riordan array A158454.

For the o.g.f.s see the comment.

EXAMPLE

The irregular triangle a(n,m) begins:

n\m  0    1    2      3     4      5     6    7   8   9  10 ...

0:   1

1:   1

2:   1   -2    1

3:   4   -4    1

4:   1   -6   11     -6     1

5:   9  -24   22     -8     1

6:   1  -12   46    -62    37    -10     1

7:  16  -80  148   -128    56    -12     1

8:   1  -20  130   -314   367   -230    79  -14   1

9:  25 -200  610   -920   771   -376   106  -16   1

10:  1  -30  295  -1106  2083  -2232  1444 -574 137 -18   1

... Reformatted and extended by Wolfdieter Lang, Nov 24 2012

CROSSREFS

Cf. A158454, A129818.

Sequence in context: A004175 A136756 A214670 * A129862 A137593 A009949

Adjacent sequences:  A181875 A181876 A181877 * A181879 A181880 A181881

KEYWORD

sign,easy,tabf

AUTHOR

Wolfdieter Lang, Dec 22 2010

EXTENSIONS

Corrected by Wolfdieter Lang, Jan 21 2011.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified September 15 23:11 EDT 2014. Contains 246792 sequences.