login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A181872 Numerators of coefficient array for minimal polynomials of sin(2*Pi/n). Rising powers of x. 8
0, 1, 0, 1, -3, 0, 1, -1, 1, 5, 0, -5, 0, 1, -3, 0, 1, -7, 0, 7, 0, -7, 0, 1, -1, 0, 1, -3, 0, 9, 0, -3, 0, 1, 5, 0, -5, 0, 1, -11, 0, 55, 0, -77, 0, 11, 0, -11, 0, 1, -1, 1, 13, 0, -91, 0, 91, 0, -39, 0, 65, 0, -13, 0, 1, -7, 0, 7, 0, -7, 0, 1, 1, 0, -1, 0, 7, 0, -7, 0, 1, 1, 0, -1, 0, 1, 17, 0, -51, 0, 357, 0, -561, 0, 935, 0, -221, 0, 119, 0, -17, 0, 1, -3, 0, 9, 0, -3, 0, 1, -19, 0, 285, 0, -627, 0, 627, 0, -2717, 0, 1729, 0, -665, 0, 19, 0, -19, 0, 1, -1, 1, 1, 1, 0, -1, 0, 15, 0, -39, 0, 11, 0, -11, 0, 1, -11, 0, 55, 0, -77, 0, 11, 0, -11, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

The corresponding denominator array is given in A181873(n,m).

The sequence of row lengths of this array is A093819(n)+1: [2, 2, 3, 2, 5, 3, 7, 3, 7, 5, 11, ...].

The minimal polynomial of the algebraic number sin(2*Pi/n), n >= 1, is here called Pi(n,x) := Sum_{m=0..d(n)} r(n,m)*x^m with the degree sequence d(n):=A093819(n), and the rationals r(n):=a(n,m)/b(n,m) with b(n,m):=A181873(n,m).

  See the Niven reference, p. 28, for the definition of 'minimal polynomial of an algebraic number'.

  Minimal polynomials are irreducible.

  The minimal polynomials of sin(2*Pi/n) are treated, e.g., in the Lehmer, Niven and Watkins-Zeitlin references.

The minimal polynomials Pi(n,x) of sin(2*Pi/n) are found from Psi(c(n),x), where Psi(m,x) is the minimal polynomial of cos(2*Pi/m), and

  c(n):= denominator(|(4-n)/(4*n)|) = A178182(n).

For the regular n-gon inscribed in the unit circle the area is n*sin(2*Pi/n). See the remark by Jack W Grahl under A093819.

S. Beslin and V. de Angelis (see the reference) give an explicit formula for the (integer) minimal polynomial of sin(2*Pi/p), called S_p(x), and cos(2*Pi/p), called C_p(x),for odd prime p, p=2k+1, with the results:

  S_p(x) = Sum_{l=0..k} ((-1)^l)*binomial(p,2*l+1)*(1-x^2)^(k-l)*x^(2*l), and C_p(x) = S_p(sqrt((1-x)/2)), where S_p(x), with leading term ((-2)^k))*x^(p-1), checks

  with((-2)^k)*Pi(p,x). - Wolfdieter Lang, Feb 28 2011

The zeros of Pi(n, x) result from those of the minimal polynomial Psi(n, x) of cos(2*Pi/n), and they are cos(2*Pi*k/n), for k = 0, ..., floor(c(n)/2), with c(n) = A178182(n), and restriction gcd(k, c(n)) = 1, for n >= 1. There are d(n) = A093819(n) such zeros. - Wolfdieter Lang, Oct 30 2019

REFERENCES

I. Niven, Irrational Numbers, The Math. Assoc. of America, second printing, 1963, distributed by John Wiley and Sons.

LINKS

Table of n, a(n) for n=1..156.

S. Beslin and V. de Angelis, The minimal Polynomials of sin(2Pi/p) and cos(2Pi/p), Mathematics Mag. 77.2 (2004) 146-9.

Wolfdieter Lang, Minimal polynomials for sin(2Pi/n).

D. H. Lehmer, A Note on Trigonometric Algebraic Numbers, Am. Math. Monthly 40 (3) (1933) 165-6.

W. Watkins and J. Zeitlin, The Minimal Polynomial of cos(2Pi/n), Am. Math. Monthly 100,5 (1993) 471-4.

FORMULA

a(n,m) = numerator([x^m]Pi(n,x)), n>=1, m=0..A093819(n). For Pi(n,x) see the comments.

The minimal polynomial Pi(n,x) = Product_{k=0..floor(c(n)/2), gcd(k, c(n)) = 1}, x - cos(2*Pi*k/c(n)), for n >= 1. - Wolfdieter Lang, Oct 30 2019

EXAMPLE

Triangle begins:

  [0, 1],

  [0, 1],

  [-3, 0, 1],

  [-1, 1],

  [5, 0, -5, 0, 1],

  [-3, 0, 1],

  [-7, 0, 7, 0, -7, 0, 1],

  [-1, 0, 1],

  [-3, 0, 9, 0, -3, 0, 1],

  [5, 0, -5, 0, 1],

  ...

The rational coefficients r(n,m) start like:

  [0, 1],

  [0, 1],

  [-3/4, 0, 1],

  [-1, 1],

  [5/16, 0, -5/4, 0, 1],

  [-3/4, 0, 1],

  [-7/64, 0, 7/8, 0, -7/4, 0, 1],

  [-1/2, 0, 1],

  [-3/64, 0, 9/16, 0, -3/2, 0, 1],

  ...

Pi(6,n) = Psi(c(6),x) = Psi(12,x) = x^2-3/4.

MATHEMATICA

p[n_, x_] := MinimalPolynomial[ Sin[2 Pi/n], x]; Flatten[ Numerator[ Table[ coes = CoefficientList[ p[n, x], x]; coes / Last[coes], {n, 1, 22}]]] (* Jean-Fran├žois Alcover, Nov 07 2011 *)

CROSSREFS

Cf. A181875, A181876 (minimal polynomials of cos(2*Pi/n)).

Sequence in context: A056614 A126309 A048838 * A239264 A294289 A059341

Adjacent sequences:  A181869 A181870 A181871 * A181873 A181874 A181875

KEYWORD

sign,easy,frac,tabf,changed

AUTHOR

Wolfdieter Lang, Jan 13 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 13 08:18 EST 2019. Contains 329093 sequences. (Running on oeis4.)