This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A181856 Denominator of Nemes number G_n. 4
 1, 12, 1440, 362880, 87091200, 11496038400, 376610217984000, 903864523161600, 36877672544993280000, 529710888436283473920000, 3496091863679470927872000000, 50785334440817577689088000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS G(n) = A181855(n)/A181856(n). Nemes numbers provide the coefficients for an asymptotic expansion for the Gamma function for real arguments greater or equal than one. Gamma(x) = sqrt(2Pi/x)((x/e)(Sum_{0<=k 1 and B_n denoting the Bernoulli number, G_n = Sum_{m=0..n} B_{2m+2} G_{n-m-1} / (2m+1),m=0..n-1)/(2n)). a(n) = denominator(p(2*n)) with p(n) = Y_{n}(0, z_2, z_3,..., z_n)/n! with z_k = (k-2)!*Bernoulli(k,1) and Y_{n} the complete Bell polynomials. - Peter Luschny, Oct 03 2016 EXAMPLE G_0 = 1, G_1 = 1/12, G_2 = 1/1440, G_3 = 239/362880. MAPLE G := proc(n) option remember; local k; `if`(n=0, 1, add(bernoulli(2*m+2)*G(n-m-1)/(2*m+1), m=0..n-1)/(2*n)) end; a181856 := n -> denom(G(n)); MATHEMATICA a[0] = 1; a[n_] := a[n] = Sum[ BernoulliB[2m + 2]*a[n - m - 1]/(2m + 1), {m, 0, n}]/(2n); Table[a[n] // Denominator, {n, 0, 11}] (* Jean-François Alcover, Jul 26 2013 *) CompleteBellB[n_, zz_] := Sum[BellY[n, k, zz[[1 ;; n-k+1]]], {k, 1, n}]; p[n_] := CompleteBellB[n, Join[{0}, Table[(k-2)! BernoulliB[k, 1], {k, 2, n}]]]/n!; a[n_] := Denominator[p[2n]]; Table[a[n], {n, 0, 11}] (* Jean-François Alcover, Sep 09 2018 *) CROSSREFS Cf. A000367, A002445, A181855 (numerators). Sequence in context: A008992 A260448 A271514 * A161149 A160490 A276905 Adjacent sequences:  A181853 A181854 A181855 * A181857 A181858 A181859 KEYWORD nonn,frac AUTHOR Peter Luschny, Dec 02 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 02:29 EDT 2019. Contains 327995 sequences. (Running on oeis4.)