login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A181855 Numerator of Nemes numbers G_n. 4
1, 1, 1, 239, -46409, 9113897, -695818219549, 5649766313929, -1070083202835456443, 93856597276403726428217, -4815785492460413153189484781, 674781102986061046417681986493, -9845646538265462155478818981872958283 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

G(n) = A181855(n)/A181856(n). Nemes numbers provide the coefficients for an asymptotic expansion for the Gamma function for real arguments greater or equal than one.

Gamma(x) = sqrt(2Pi/x)((x/e)(Sum_{0<=k<n} G_k x^(-2k) + R_n(x)))^x.

LINKS

Table of n, a(n) for n=0..12.

Gergő Nemes, New asymptotic expansion for the Gamma function, Arch. Math. 95 (2010), 161-169, Springer Basel.

W. Wang, Unified approaches to the approximations of the gamma function, J. Number Theory (2016).

FORMULA

G_0 = 1 and for n > 1 and B_n denoting the Bernoulli number,

G_n = Sum_{m=0..n} B_{2m+2} G_{n-m-1} / (2m+1),m=0..n-1)/(2n)).

a(n) = numerator(p(2*n)) with p(n) = Y_{n}(0, z_2, z_3,..., z_n)/n! with z_k = (k-2)!*Bernoulli(k,1) and Y_{n} the complete Bell polynomials. - Peter Luschny, Oct 03 2016

EXAMPLE

G_0 = 1, G_1 = 1/12, G_2 = 1/1440, G_3 = 239/362880.

MAPLE

G := proc(n) option remember; local k; `if`(n=0, 1,

add(bernoulli(2*m+2)*G(n-m-1)/(2*m+1), m=0..n-1)/(2*n)) end;

a181855 := n -> numer(G(n));

# Alternatively:

p := n -> CompleteBellB(n, 0, seq((k-2)!*bernoulli(k, 1), k=2..n))/n!:

a := n -> numer(p(2*n)): seq(a(n), n=0..12); # Peter Luschny, Oct 03 2016

MATHEMATICA

a[0] = 1; a[n_] := a[n] = Sum[ BernoulliB[2m + 2]*a[n - m - 1]/(2m + 1), {m, 0, n}]/(2n); Table[a[n] // Numerator, {n, 0, 12}] (* Jean-François Alcover, Jul 26 2013 *)

CROSSREFS

Cf. A000367, A002445, A181856 (denominators).

Sequence in context: A069364 A163052 A254298 * A223741 A223724 A223788

Adjacent sequences:  A181852 A181853 A181854 * A181856 A181857 A181858

KEYWORD

sign,frac

AUTHOR

Peter Luschny, Dec 02 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 22 00:25 EDT 2017. Contains 292326 sequences.