login
Products of superprimorials (A006939).
33

%I #38 Jul 17 2023 07:59:52

%S 1,2,4,8,12,16,24,32,48,64,96,128,144,192,256,288,360,384,512,576,720,

%T 768,1024,1152,1440,1536,1728,2048,2304,2880,3072,3456,4096,4320,4608,

%U 5760,6144,6912,8192,8640,9216,11520,12288,13824,16384,17280,18432,20736,23040,24576,27648,32768

%N Products of superprimorials (A006939).

%C Sorted list of positive integers with a factorization Product p(i)^e(i) such that (e(1) - e(2)) >= (e(2) - e(3)) >= ... >= (e(k-1) - e(k)) >= e(k), with k = A001221(n), and p(k) = A006530(n) = A000040(k), i.e., the prime factors p(1) .. p(k) must be consecutive primes from 2 onward. - Comment clarified by _Antti Karttunen_, Apr 28 2022

%C Subsequence of A025487. A025487(n) belongs to this sequence iff A181815(n) is a member of A025487.

%C If prime signatures are considered as partitions, these are the members of A025487 whose prime signature is conjugate to the prime signature of a member of A182863. - _Matthew Vandermast_, May 20 2012

%H Amiram Eldar, <a href="/A181818/b181818.txt">Table of n, a(n) for n = 1..10000</a>

%e 2, 12, and 360 are all superprimorials (i.e., members of A006939). Therefore, 2*2*12*360 = 17280 is included in the sequence.

%e From _Gus Wiseman_, Aug 12 2020 (Start):

%e The sequence of factorizations (which are unique) begins:

%e 1 = empty product

%e 2 = 2

%e 4 = 2*2

%e 8 = 2*2*2

%e 12 = 12

%e 16 = 2*2*2*2

%e 24 = 2*12

%e 32 = 2*2*2*2*2

%e 48 = 2*2*12

%e 64 = 2*2*2*2*2*2

%e 96 = 2*2*2*12

%e 128 = 2*2*2*2*2*2*2

%e 144 = 12*12

%e 192 = 2*2*2*2*12

%e 256 = 2*2*2*2*2*2*2*2

%e (End)

%t Select[Range[100],PrimePi[First/@If[#==1,{}, FactorInteger[#]]]==Range[ PrimeNu[#]]&&LessEqual@@Differences[ Append[Last/@FactorInteger[#],0]]&] (* _Gus Wiseman_, Aug 12 2020 *)

%o (PARI)

%o firstdiffs0forward(vec) = { my(v=vector(#vec)); for(n=1,#v,v[n] = vec[n]-if(#v==n,0,vec[1+n])); (v); };

%o A353518(n) = if(1==n,1,my(f=factor(n), len=#f~); if(primepi(f[len,1])!=len, return(0), my(diffs=firstdiffs0forward(f[,2])); for(i=1,#diffs-1,if(diffs[i+1]>diffs[i],return(0))); (1)));

%o isA181818(n) = A353518(n); \\ _Antti Karttunen_, Apr 28 2022

%Y A181817 rearranged in numerical order. Also includes all members of A000079, A001021, A006939, A009968, A009992, A066120, A166475, A167448, A181813, A181814, A181816, A182763.

%Y Subsequence of A025487, A055932, A087980, A130091, A181824.

%Y A001013 is the version for factorials.

%Y A336426 is the complement.

%Y A336496 is the version for superfactorials.

%Y A001055 counts factorizations.

%Y A006939 lists superprimorials or Chernoff numbers.

%Y A317829 counts factorizations of superprimorials.

%Y Cf. A022915, A076954, A304686, A325368, A336419, A336420, A336421, A353518 (characteristic function).

%K nonn

%O 1,2

%A _Matthew Vandermast_, Nov 30 2010