login
a(n) is the smallest integer that, when divided by any divisor of A025487(n), yields a member of A025487.
8

%I #13 Jul 07 2019 13:36:07

%S 1,2,4,12,8,24,16,48,360,32,144,96,720,64,288,192,1440,128,576,4320,

%T 384,75600,1728,2880,256,1152,8640,768,151200,3456,5760,512,2304,

%U 17280,1536,302400,6912,129600,11520,1024,51840,4608,907200,20736,34560,3072,604800,13824,259200,23040,2048

%N a(n) is the smallest integer that, when divided by any divisor of A025487(n), yields a member of A025487.

%C A permutation of A181818.

%H Amiram Eldar, <a href="/A181817/b181817.txt">Table of n, a(n) for n = 1..10000</a>

%F If A025487(n) = Product prime(i)^e(i), then a(n) = Product A002110(i)^e(i). I.e., a(n) = A108951(A025487(n)).

%F If A025487(n) = Product A002110(i)^e(i), then a(n) = Product A006939(i)^e(i).

%F a(n) = A025487(n) * A181816(n).

%e For any divisor d of 6 (d = 1, 2, 3, 6), 12/d (12, 6, 4, 2) is always a member of A025487. 12 is the smallest number with this relationship to 6; therefore, since 6 = A025487(4), a(4) = 12.

%Y Cf. A025487, A108951, A181816, A181818.

%K nonn

%O 1,2

%A _Matthew Vandermast_, Nov 30 2010