

A181792


Positive integers such that, for each k=0,1,2, the count of its divisors congruent to k modulo 3 is congruent to k modulo 3.


2



28, 52, 76, 84, 124, 148, 156, 172, 175, 228, 244, 252, 268, 292, 316, 325, 372, 388, 412, 436, 444, 468, 475, 508, 516, 525, 556, 604, 628, 652, 684, 700, 724, 732, 756, 772, 775, 796, 804, 844, 847, 876, 892, 916, 925, 948, 964, 975, 1075, 1084, 1108, 1116, 1132, 1164
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Inspired by the positive perfect squares (cf. A000290), the analogous sequence for modulo 2. (This sequence contains an infinite number of squares, the first of which is 9604.) No analogous sequence exists for any even modulus greater than 2. (For n>1, if the number of 2n's divisors congruent to k mod 2n is congruent to k mod 2n for each k coprime to 2n, then the number of divisors congruent to n mod 2n must be congruent to 0 mod 2n.) Is there an analogous sequence for any odd modulus > 3?
It appears that a(n) < A000290(n) for all n>=22, despite this sequence's having 3 modular requirements for its divisors rather than 2.
n belongs to the sequence if and only if 3n does.


LINKS

Table of n, a(n) for n=1..54.


FORMULA

If the prime factorization of n is Product_ p(i)^e(i), these are the positive integers n such that:
a) For primes congruent to 1 modulo 3, an odd number of e(i) are congruent to 1 modulo 3, and none is congruent to 2 modulo 3.
b) For primes congruent to 2 modulo 3, all e(i) are congruent to 0 modulo 2, and at least one is congruent to 2 modulo 6.


EXAMPLE

Of 28's six divisors, four of them (1, 4, 7, and 28) are congruent to 1 mod 3; two of them (2 and 14) are congruent to 2 mod 3; and none of them are congruent to 0 mod 3. Note that 4, 2 and 0 are congruent to 1 mod 3, 2 mod 3 and 0 mod 3 respectively. 28 therefore belongs to the sequence.


MATHEMATICA

Reap[Do[d = Divisors[n];
c0 = Length[Select[d, Mod[#, 3] == 0 &]];
c1 = Length[Select[d, Mod[#, 3] == 1 &]];
c2 = Length[Select[d, Mod[#, 3] == 2 &]];
If[Mod[c0, 3] == 0 && Mod[c1, 3] == 1 && Mod[c2, 3] == 2, Sow[n]], {n, 1164}]][[2, 1]]


CROSSREFS

Cf. A181793.
Sequence in context: A161923 A039772 A291855 * A181793 A224545 A216303
Adjacent sequences: A181789 A181790 A181791 * A181793 A181794 A181795


KEYWORD

nonn


AUTHOR

Matthew Vandermast, Nov 13 2010


EXTENSIONS

Changed "number" to "count" in name so as to hopefully clarify what is being counted, and that mod 3 is performed at two steps in the process.


STATUS

approved



