OFFSET
1,5
COMMENTS
Harland proves the conjecture of Martin & Pomerance that a(n) = n exp ((1 + o(1))(log log n)^2 log log log n) for almost all n, as well as a generalization to k-th iterates. - Charles R Greathouse IV, Dec 21 2011
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Nick Harland, The iterated Carmichael lambda function, arXiv:1111.3667 [math.NT], 2011.
G. Martin and C. Pomerance, The iterated Carmichael lambda-function and the number of cycles of the power generator, Acta Arith. 118:4 (2005), pp. 305-335.
MATHEMATICA
Table[CarmichaelLambda[CarmichaelLambda[n]], {n, 1, 100}]
Table[Nest[CarmichaelLambda, n, 2], {n, 100}] (* Harvey P. Dale, Jul 01 2020 *)
PROG
(PARI) a(n)=lcm(znstar(lcm(znstar(n)[2]))[2]) \\ Charles R Greathouse IV, Nov 04 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Nov 12 2010
STATUS
approved