OFFSET
0,2
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..350
FORMULA
Recursion: see Maple program. - Alois P. Heinz, Aug 31 2014
a(n) ~ 8 * 5^(4*n-1) / (3*sqrt(3) * (Pi*n)^(3/2)). - Vaclav Kotesovec, Sep 03 2014
EXAMPLE
a(1) = 24 because there are 24 rook paths from (0..0) to (1..1).
MAPLE
a:= proc(n) option remember; `if`(n<4, [1, 24, 6384, 2306904][n+1],
((44148546*n^7-417566955*n^6+1582366209*n^5-3082719955*n^4
+3301523581*n^3-1923587242*n^2+559133416*n-61892160)*(n-1)^2*
a(n-1) -2*(n-2)*(131501097*n^8-1572004161*n^7+7935973542*n^6
-21971456652*n^5+36200366619*n^4-35926876063*n^3+20608609302*n^2
-6086148644*n+688049040)*a(n-2) +(393838614*n^7-4640973051*n^6
+22263043023*n^5-55659442951*n^4+77029268163*n^3
-57647348158*n^2+20864000120*n-2733950400)*(n-3)^2*a(n-3)
-5000*(34983*n^4-138138*n^3+184101*n^2-92498*n+14640)*(n-3)^2*
(n-4)^3*a(n-4))/ (2*n^3*(464360-1015046*n+808413*n^2
-278070*n^3+34983*n^4)*(n-1)^2))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Aug 31 2014
MATHEMATICA
b[l_List] := b[l] = If[Union[l]~Complement~{0} == {}, 1, Sum[Sum[b[Sort[ ReplacePart[l, i -> l[[i]] - j]]], {j, 1, l[[i]]}], {i, 1, Length[l]}]];
a[n_] := b[Array[n&, 4]];
CROSSREFS
KEYWORD
nonn
AUTHOR
Manuel Kauers, Nov 16 2010
STATUS
approved