This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A181731 Table A(d,n) of the number of paths of a chess rook in a d-dimensional hypercube from (0...0) to (n...n) where the rook may move in steps that are multiples of (1,0..0), (0,1,0..0), ..., (0..0,1). 14
 1, 1, 1, 1, 2, 2, 1, 6, 14, 4, 1, 24, 222, 106, 8, 1, 120, 6384, 9918, 838, 16, 1, 720, 291720, 2306904, 486924, 6802, 32, 1, 5040, 19445040, 1085674320, 964948464, 25267236, 56190, 64, 1, 40320, 1781750880, 906140159280, 4927561419120, 439331916888, 1359631776, 470010, 128, 1, 362880, 214899027840, 1224777388630320, 54259623434853360 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS The table is enumerated along antidiagonals: A(1,0), A(2,0), A(1,1), A(3,0), A(2,1), A(1,2), A(4,0), A(3,1), A(2,2), A(1,3), ... . LINKS Alois P. Heinz, Antidiagonals n = 1..20 M. Kauers and D. Zeilberger, The Computational Challenge of Enumerating High-Dimensional Rook Walks, arXiv:1011.4671 [math.CO], 2010. EXAMPLE A(3,1) = 6 because there are 6 rook paths on 3D chessboards from (0,0,0) to (1,1,1). Square table A(d,n) begins:   1,   1,      2,          4,             8, ...   1,   2,     14,        106,           838, ...   1,   6,    222,       9918,        486924, ...   1,  24,   6384,    2306904,     964948464, ...   1, 120, 291720, 1085674320, 4927561419120, ... MAPLE b:= proc(l) option remember; `if`({l[]} minus {0}={}, 1, add(add        (b(sort(subsop(i=l[i]-j, l))), j=1..l[i]), i=1..nops(l)))     end: A:= (d, n)-> b([n\$d]): seq(seq(A(h-n, n), n=0..h-1), h=1..10); # Alois P. Heinz, Jul 21 2012 MATHEMATICA b[l_List] := b[l] = If[Union[l] ~Complement~ {0} == {}, 1, Sum[ Sum[ b[ Sort[ ReplacePart[l, i -> l[[i]] - j]]], {j, 1, l[[i]]}], {i, 1, Length[l]}]]; A[d_, n_] := b[Array[n&, d]]; Table[Table[A[h-n, n], {n, 0, h-1}], {h, 1, 10}] // Flatten (* Jean-François Alcover, Feb 25 2015, after Alois P. Heinz *) CROSSREFS Rows d=1-12 give: A011782, A051708 (from [1,1]), A144045 (from [1,1,1]), A181749, A181750, A181751, A181752, A181724, A181725, A181726, A181727, A181728. Columns n=0-2 give: A000012, A000142, A105749. Main diagonal gives A246623. Sequence in context: A074297 A020824 A138678 * A278792 A108338 A021455 Adjacent sequences:  A181728 A181729 A181730 * A181732 A181733 A181734 KEYWORD nonn,tabl AUTHOR Manuel Kauers, Nov 16 2010 EXTENSIONS Edited by Alois P. Heinz, Jul 21 2012 Minor edits by Vaclav Kotesovec, Sep 03 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 08:57 EDT 2019. Contains 328345 sequences. (Running on oeis4.)