login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A181731 Table A(d,n) of the number of paths of a chess rook in a d-dimensional hypercube from (0...0) to (n...n) where the rook may move in steps that are multiples of (1,0..0), (0,1,0..0), ..., (0..0,1). 14
1, 1, 1, 1, 2, 2, 1, 6, 14, 4, 1, 24, 222, 106, 8, 1, 120, 6384, 9918, 838, 16, 1, 720, 291720, 2306904, 486924, 6802, 32, 1, 5040, 19445040, 1085674320, 964948464, 25267236, 56190, 64, 1, 40320, 1781750880, 906140159280, 4927561419120, 439331916888, 1359631776, 470010, 128, 1, 362880, 214899027840, 1224777388630320, 54259623434853360 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

The table is enumerated along antidiagonals: A(1,0), A(2,0), A(1,1), A(3,0), A(2,1), A(1,2), A(4,0), A(3,1), A(2,2), A(1,3), ... .

LINKS

Alois P. Heinz, Antidiagonals n = 1..20

M. Kauers and D. Zeilberger, The Computational Challenge of Enumerating High-Dimensional Rook Walks, arXiv:1011.4671 [math.CO], 2010.

EXAMPLE

A(3,1) = 6 because there are 6 rook paths on 3D chessboards from (0,0,0) to (1,1,1).

Square table A(d,n) begins:

  1,   1,      2,          4,             8, ...

  1,   2,     14,        106,           838, ...

  1,   6,    222,       9918,        486924, ...

  1,  24,   6384,    2306904,     964948464, ...

  1, 120, 291720, 1085674320, 4927561419120, ...

MAPLE

b:= proc(l) option remember; `if`({l[]} minus {0}={}, 1, add(add

       (b(sort(subsop(i=l[i]-j, l))), j=1..l[i]), i=1..nops(l)))

    end:

A:= (d, n)-> b([n$d]):

seq(seq(A(h-n, n), n=0..h-1), h=1..10); # Alois P. Heinz, Jul 21 2012

MATHEMATICA

b[l_List] := b[l] = If[Union[l] ~Complement~ {0} == {}, 1, Sum[ Sum[ b[ Sort[ ReplacePart[l, i -> l[[i]] - j]]], {j, 1, l[[i]]}], {i, 1, Length[l]}]]; A[d_, n_] := b[Array[n&, d]]; Table[Table[A[h-n, n], {n, 0, h-1}], {h, 1, 10}] // Flatten (* Jean-Fran├žois Alcover, Feb 25 2015, after Alois P. Heinz *)

CROSSREFS

Rows d=1-12 give: A011782, A051708 (from [1,1]), A144045 (from [1,1,1]), A181749, A181750, A181751, A181752, A181724, A181725, A181726, A181727, A181728.

Columns n=0-2 give: A000012, A000142, A105749.

Main diagonal gives A246623.

Sequence in context: A074297 A020824 A138678 * A278792 A108338 A021455

Adjacent sequences:  A181728 A181729 A181730 * A181732 A181733 A181734

KEYWORD

nonn,tabl

AUTHOR

Manuel Kauers, Nov 16 2010

EXTENSIONS

Edited by Alois P. Heinz, Jul 21 2012

Minor edits by Vaclav Kotesovec, Sep 03 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 08:57 EDT 2019. Contains 328345 sequences. (Running on oeis4.)