

A181692


The smallest positive m such that 2^m2^n1 is prime, or 0 if such an m does not exist.


6



2, 3, 3, 4, 6, 6, 8, 8, 14, 12, 14, 13, 20, 14, 18, 24, 22, 18, 20, 20, 38, 24, 42, 28, 32, 32, 50, 59, 34, 32, 44, 32, 38, 38, 36, 40, 48, 42, 40, 45, 48, 45, 56, 45, 54, 48, 76, 52, 68, 66, 100, 89, 80, 74, 80, 57, 66, 78, 98, 83, 162, 62, 166, 77, 66, 77, 72, 76, 74, 153, 80, 89, 86, 77, 94, 83, 78, 88, 110, 115, 84
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


LINKS

Amiram Eldar, Table of n, a(n) for n = 0..3000


MAPLE

A181692 := proc(n) for m from n to 100000 do if isprime(2^m2^n1) then return m; end if; end do: return 0 ; end proc:


MATHEMATICA

m[n_]:=Module[{m=n+1}, While[!PrimeQ[2^m2^n1], m++]; m]
Table[m[i], {i, 90}] (* Harvey P. Dale, Dec. 18, 2010 *)


PROG

(PARI) for(n=0, 80, for(m=n+1, oo, k=2^m2^n1; if(isprime(k), print1(m, ", "); break))) \\ Hugo Pfoertner, Jan 12 2020


CROSSREFS

Cf. A096502.
Sequence in context: A093003 A118096 A296440 * A145806 A100989 A188215
Adjacent sequences: A181689 A181690 A181691 * A181693 A181694 A181695


KEYWORD

nonn


AUTHOR

Vladimir Shevelev, Nov 05 2010


EXTENSIONS

a(12) corrected and sequence extended by R. J. Mathar, Nov 17 2010


STATUS

approved



