login
Expansion of (1+2x-x^3+x^4)/(1-4x^2+3x^4).
3

%I #18 Apr 06 2019 08:45:23

%S 1,2,4,7,14,22,44,67,134,202,404,607,1214,1822,3644,5467,10934,16402,

%T 32804,49207,98414,147622,295244,442867,885734,1328602,2657204,

%U 3985807,7971614,11957422,23914844,35872267,71744534,107616802,215233604

%N Expansion of (1+2x-x^3+x^4)/(1-4x^2+3x^4).

%C Row sums of A181654.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,4,0,-3).

%F G.f.: (1+2*x-x^3+x^4)/((1-x^2)*(1-3*x^2)).

%F a(n) = 5*A038754(n+1)/6 - A040001(n)/2. - _R. J. Mathar_, May 14 2016

%F a(2n-1) = A060816(n-1), a(2n) = A198643(n-1); n >= 1. a(n+1) = 2*a(n) if n is odd. - _M. F. Hasler_, Apr 06 2019

%t CoefficientList[Series[(1+2x-x^3+x^4)/(1-4x^2+3x^4),{x,0,40}],x] (* or *) Join[{1},LinearRecurrence[{0,4,0,-3},{2,4,7,14},40]] (* _Harvey P. Dale_, Jan 11 2012 *)

%o (PARI) A181655(n)=if(bitand(n,1), 3^(n\2)*5\2, n, 3^(n\2-1)*5-1, 1) \\ _M. F. Hasler_, Apr 06 2019

%Y Cf. A060816, A198643 (bisections).

%K easy,nonn

%O 0,2

%A _Paul Barry_, Nov 03 2010