login
A181624
Decimal expansion of 486^(1/3).
0
7, 8, 6, 2, 2, 2, 4, 1, 8, 2, 6, 2, 6, 6, 8, 9, 8, 2, 1, 4, 2, 4, 9, 8, 3, 8, 4, 1, 3, 2, 5, 9, 8, 8, 8, 1, 0, 7, 1, 8, 2, 8, 2, 9, 3, 7, 1, 7, 0, 8, 9, 5, 1, 7, 5, 3, 0, 8, 3, 2, 1, 4, 1, 7, 1, 8, 6, 0, 9, 9, 4, 5, 7, 5, 8, 8, 1, 2, 6, 3, 2, 6, 4, 8, 5, 3, 6, 7, 4, 7, 7, 9, 6, 7, 2, 2, 0, 7, 9, 3
OFFSET
1,1
COMMENTS
The cube root of 486 arises in Bezdek's proof on contact numbers for congruent sphere packings.
REFERENCES
C. A. Rogers, Packing and Covering, Camb. Univ. Press, 1964.
LINKS
Karoly Bezdek, Contact numbers for congruent sphere packings, arXiv:1102.1198 [math.MG], 2011.
H. Harborth, Losung zu Problem 664A, Elem. Math. 29 (1974), 14-15.
G. A. Kabatiansky and V. I. Levenshtein, Bounds for packings on a sphere and in space, Problemy Peredachi Informatsii 14 (1978), 3-25.
G. Kuperberg and O. Schramm, Average kissing numbers for noncongruent sphere packings, Math. Res. Lett. 1/3 (1994), 339-344.
EXAMPLE
7.86222418262668982142498384132598881...
MATHEMATICA
RealDigits[Surd[486, 3], 10, 120][[1]] (* Harvey P. Dale, Jul 06 2017 *)
PROG
(PARI) sqrtn(486, 3) \\ Charles R Greathouse IV, Apr 25 2016
CROSSREFS
Sequence in context: A262898 A004496 A197762 * A277683 A143300 A303985
KEYWORD
nonn,easy,cons
AUTHOR
Jonathan Vos Post, Feb 08 2011
STATUS
approved