A triangle for calculating A181613.

Peter Bala, April 25, 2017
Oste and van der Jeugt [1, Section 7] show that a continued fraction of the form

$$
\begin{equation*}
\frac{1}{1-x d_{0}-\frac{x h_{1}}{1-x d_{1}-\frac{x h_{2}}{1-x d_{2}-\frac{x h_{3}}{1-x d_{3}-\cdots}}}} \tag{1}
\end{equation*}
$$

is the generating function for 2-Motzkin paths weighted by the integers d_{i} and h_{i}. This combinatorial interpretation allows one to rapidly calculate the terms of a sequence whose generating function can be expressed as a continued fraction of the form (1). The results are conveniently displayed in the form of a lower triangular array, where the $d^{\prime} s$ occur as multiplication factors along diagonals of the array and the $h^{\prime} s$ as horizontal multiplication factors along rows of the array. In the particular case of A181613, which gives the expansion of the Jacobian elliptic function $\mathrm{nc}(x, k)$, the bivariate generating function can be expressed as the continued fraction

$$
1 /\left(1-x /\left(1-2^{2}\left(1-k^{2}\right) x /\left(1-3^{2} x /\left(1-4^{2}\left(1-k^{2}\right) x /\left(1-5^{2} x /(1-\ldots)\right)\right)\right)\right)\right)
$$

So in this case the $d^{\prime} s$ are all zero and the horizontal multiplication factors are given by the formula $h_{2 n+1}=(2 n+1)^{2}, h_{2 n}=(2 n)^{2}\left(1-k^{2}\right)$. The row polynomials of A181613 appear on the leading diagonal of the following lower triangular array:
\downarrow

1	$-\mathrm{x} 1 \rightarrow>$	1			
\downarrow	$-\mathrm{x} 4\left(1-k^{2}\right) \rightarrow$	\downarrow	$5-4 k^{2}$	$-\mathrm{x} 1 \rightarrow>$	$5-4 k^{2}$
1		\downarrow			
\downarrow		\downarrow	\downarrow		
1	$-\mathrm{x} 9 \rightarrow>$	$14-4 k^{2}$	$-\mathrm{x} 4\left(1-k^{2}\right) \rightarrow$	$61-76 k^{2}+16 k^{4}$	$-\mathrm{x} 1 \rightarrow$
					$61-76 k^{2}+16 k^{4}$

References

[1] R. Oste and J. Van der Jeugt, Motzkin paths, Motzkin polynomials and recurrence relations, Electronic Journal of Combinatorics 22(2) (2015), \#P2.8. Section 7

