login
a(n) = A002110(n)^n.
14

%I #9 Aug 22 2019 21:55:56

%S 1,2,36,27000,1944810000,65774855015100000,

%T 733384949590939374729000000,9037114296609938214167920266348510000000,

%U 78354300210436852307898467208663359164858967744100000000

%N a(n) = A002110(n)^n.

%C For n>0, a(n)= first counting number whose prime signature consists of n repeated n times (cf. A002024). Subsequence of A025487.

%H Amiram Eldar, <a href="/A181555/b181555.txt">Table of n, a(n) for n = 0..26</a>

%F a(n) = A079474(2n,n). - _Alois P. Heinz_, Aug 22 2019

%e a(4) = 1944810000 = 210^4 = 2^4 * 3^4 * 5^4 * 7^4.

%t a[0] = 1; a[n_] := Product[Prime[i], {i, 1, n}]^n; Array[a, 9, 0] (* _Amiram Eldar_, Aug 08 2019 *)

%Y A061742(n) = A002110(n)^2. See also A006939, A066120, A166475, A167448.

%Y A000005(a(n)) = A000169(n). The divisors of a(n) appear as the first A000169(n) terms of A178479, with A178479(A000169(n)) = a(n).

%Y A071207(n, k) gives the number of divisors of n with (n-k) distinct prime factors, A181567(n, k) gives the number of divisors of n with k prime factors counted with multiplicity.

%Y Cf. A001221, A001222, A079474, A146290, A146292.

%K easy,nonn

%O 0,2

%A _Matthew Vandermast_, Oct 31 2010