

A181539


Smallest number m > 1 such that m^2 == 1 (mod 10^n).


2



9, 49, 249, 1249, 18751, 218751, 781249, 24218751, 74218751, 1425781249, 13574218751, 163574218751, 163574218751, 19836425781249, 19836425781249, 2480163574218751, 12519836425781249, 12519836425781249, 487480163574218751, 15487480163574218751, 215487480163574218751, 215487480163574218751
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

a(n) > 10^floor(n/2).
All terms have last digit 1 or 9.
Squares of terms are listed in A085877.
Decimal representation of each term is formed by the reverse concatenation of initial terms of either A063006 or A091661.
Except for 3, there are no solutions for n>1 and m^2 == 1 (mod 10^n). See comment in A063006 under extensions.  Robert G. Wilson v, Jan 26 2013
If a(n)<(10^n)/2 then (10^na(n))^2 is also congruent (modulo 10^n), its just not the least.  Robert G. Wilson v, Jan 26 2013


LINKS

Max Alekseyev, Table of n, a(n) for n = 1..1000


EXAMPLE

1249^2 = 1560001 == 1 (mod 10^4), and there is no smaller m > 1 such that m^2 == 1 (mod 10^4). Hence a(4) = 1249.


CROSSREFS

Cf. A085610, A181607. [From R. J. Mathar, Oct 30 2010]
Sequence in context: A192814 A228018 A081655 * A224473 A146798 A055428
Adjacent sequences: A181536 A181537 A181538 * A181540 A181541 A181542


KEYWORD

nonn


AUTHOR

Kevin Batista (kevin762401(AT)yahoo.com), Oct 29 2010


EXTENSIONS

a(2) through a(4), a(7) through a(11) corrected, comment added, example replaced by Klaus Brockhaus, Nov 01 2010
Edited by N. J. A. Sloane, Oct 29 2010, Nov 09 2010
Constrained the definition to avoid the constant sequence a(n)=1  R. J. Mathar, Nov 18 2010
a(1) corrected, terms a(13) onward added by Max Alekseyev, Dec 10 2012


STATUS

approved



