

A181517


Number of torsion pairs in the cluster category of type A_n.


1



1, 4, 17, 82, 422, 2274, 12665, 72326, 421214, 2492112, 14937210, 90508256, 553492552, 3411758334, 21175624713, 132226234854, 830077057878, 5235817447752, 33166634502334, 210904780742860, 1345806528336772
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

3,2


COMMENTS

a(n) is also the number of Ptolemy diagrams on n vertices with distinguished base edge.
a(n) is the sum over all polygon dissections in a polygon with distinguished base edge, where each region of size at least four has weight two.


LINKS

Table of n, a(n) for n=3..23.
Thorsten Holm, Peter Jorgensen, Martin Rubey, Ptolemy diagrams and torsion pairs in the cluster category of Dynkin type A_n, arXiv:1010.1184v1 [math.RT], 2010


FORMULA

G.F. satisfies P(y)=y+P(y)^2(1+P(y))/(1P(y)).


EXAMPLE

For n=4 there are 4 Ptolemy diagrams: the square with no diagonal, two diagrams with one diagonal, and the square with both diagonals .


PROG

(PARI) a(n) = sum(i=0, floor((n+1)/2), 2^i*binomial(n+1+i, i)*binomial(2*n+2, n+12*i))/(n+2); \\ Michel Marcus, Jan 14 2012


CROSSREFS

Cf. A181519.
Sequence in context: A121545 A078845 A230126 * A110771 A082028 A052315
Adjacent sequences: A181514 A181515 A181516 * A181518 A181519 A181520


KEYWORD

easy,nonn


AUTHOR

Martin Rubey (martin.rubey(AT)math.unihannover.de), Oct 26 2010


STATUS

approved



