login
A181509
a(1) = 2, a(n) = (n-th-even n^3) - (sum of previous terms)
1
2, 6, 56, 152, 296, 488, 728, 1016, 1352, 1736, 2168, 2648, 3176, 3752, 4376, 5048, 5768, 6536, 7352, 8216, 9128, 10088, 11096, 12152, 13256, 14408, 15608, 16856, 18152, 19496, 20888, 22328, 23816, 25352, 26936, 28568, 30248, 31976, 33752
OFFSET
1,1
FORMULA
a(n) = 56-72*n+24*n^2, n>2. a(n) = (2*n-2)^3-sum_{i=1..n-1} a(i). [From R. J. Mathar, Nov 01 2010]
For n>2, a(1)=56, a(2)=152, a(3)=296, a(n)=3*a(n-1)-3*a(n-2)+a(n-3) [From Harvey P. Dale, May 05 2011]
G.f.: 2*x*(22*x^2+x^4+1)/(1-x)^3. - R. J. Mathar, Aug 26 2011
a(n)=8*A003215(n-2) for n>2. - J. M. Bergot, Aug 21 2013
MATHEMATICA
Join[{2, 6}, Table[56-72n+24n^2, {n, 3, 42}]] (* or *) Join[{2, 6}, LinearRecurrence[{3, -3, 1}, {56, 152, 296}, 40]] (* Harvey P. Dale, May 05 2011 *)
CROSSREFS
Cf. A000578.
Sequence in context: A084123 A193473 A336899 * A213026 A074023 A354315
KEYWORD
easy,nonn
AUTHOR
Giovanni Teofilatto, Oct 25 2010
EXTENSIONS
Corrected (replaced 2 and 4 by a 6 = 8-2) by R. J. Mathar, Nov 01 2010
STATUS
approved