login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A181482 The sum of the first n integers, with every third integer taken negative. 4
1, 3, 0, 4, 9, 3, 10, 18, 9, 19, 30, 18, 31, 45, 30, 46, 63, 45, 64, 84, 63, 85, 108, 84, 109, 135, 108, 136, 165, 135, 166, 198, 165, 199, 234, 198, 235, 273, 234, 274, 315, 273, 316, 360, 315, 361, 408, 360, 409, 459, 408, 460, 513, 459, 514, 570, 513, 571, 630 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The partial sum for the first 10^k terms are 76, 57256, 55722556, 55572225556, 55557222255556,..., i.e., the palindrome 5{k}2{k-1}5{k} plus 1+2*10^(2*k-1). - R. J. Cano, Mar 10 2013, edited by M. F. Hasler, Mar 25 2013

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Wolfram Alpha, WA Query

Index to sequences with linear recurrences with constant coefficients, signature (1,0,2,-2,0,-1,1).

FORMULA

From R. J. Mathar, Oct 23 2010: (Start)

a(n) = a(n-1) + 2*a(n-3) - 2*a(n-4) - a(n-6) + a(n-7).

G.f.: -x*(1+2*x+2*x^3+x^4-3*x^2) / ( (1+x+x^2)^2*(x-1)^3 ).

a(n) = 2*A061347(n+1)/9 +4/9 + n*(n+1)/6 + 2*b(n)/3 where b(3k+1) = 0, b(3k) = -3k - 1 and b(3k+2) = 3k + 3. (End)

a(n) = sum((i+1)*A131561(i), i=0..n-1) = A000217(n)-6*A000217(floor(n/3)). [Bruno Berselli, Dec 10 2010]

a(0) = 0, a(n) = a(n-1) + (-1)^((n + 1) mod 3)*n - Jon Perry, Feb 17 2013

a(n) = n*(n+1)/2-3*floor(n/3)*(floor(n/3)+1). - R. J. Cano, Mar 01 2013 [Same as Berselli's formula. - Ed.]

a(3k) = 3k(k-1)/2. - Jon Perry, Mar 01 2013

a(0) = 0, a(n) = a(n-1) + (1 - ((n+1) mod 3 mod 2) * 2) * n. - Jon Perry, Mar 03 2013

EXAMPLE

a(7) = 1 + 2 - 3 + 4 + 5 - 6 + 7 = 10.

MATHEMATICA

a[n_] := Sum[If[Mod[j, 3] == 0, -j, j], {j, 1, n}]; Table[a[i], {i, 1, 50, 1}] (* Jon Perry *)

tri[n_] := n (n + 1)/2; f[n_] := tri@ n - 6 tri@ Floor[n/3]; Array[f, 63] (* Robert G. Wilson v, Oct 24 2010 *)

CoefficientList[Series[-(1 + 2*x + 2*x^3 + x^4 - 3*x^2)/((1 + x + x^2)^2*(x - 1)^3), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 17 2013 *)

Table[Sum[k * (-1)^Boole[Mod[k, 3] == 0], {k, n}], {n, 60}] (* Alonso del Arte, Feb 24 2013 *)

PROG

(JavaScript) c = 0; for (i = 1; i < 100; i++) {c += Math.pow(-1, (i + 1) % 3)*i; document.write(c, ", "); } // Jon Perry, Feb 17 2013

(JavaScript) c=0; for (i = 1; i < 100; i++) { c += (1 - (i + 1) % 3 % 2 * 2) * i; document.write(c + ", "); } // Jon Perry, Mar 03 2013

(MAGMA) I:=[1, 3, 0, 4, 9, 3, 10]; [n le 7 select I[n] else Self(n-1)+2*Self(n-3)-2*Self(n-4)-Self(n-6)+Self(n-7): n in [1..60]]; // Vincenzo Librandi, Feb 17 2013

(PARI) a(n)=sum(k=1, n, k*((-1)^(k%3==0)) )  \\ R. J. Cano, Feb 26 2013

(PARI) a(n)={my(y=n\3); n*(n+1)\2-3*y*(y+1)} \\ R. J. Cano, Feb 28 2013

CROSSREFS

Cf. A213203, A000217.

Sequence in context: A021332 A008344 A088230 * A072329 A068630 A079406

Adjacent sequences:  A181479 A181480 A181481 * A181483 A181484 A181485

KEYWORD

nonn,easy

AUTHOR

Jon Perry, Oct 23 2010

EXTENSIONS

More terms added by R. J. Mathar, Oct 23 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 26 01:49 EST 2014. Contains 250017 sequences.