login
a(n) = (35*n^4 - 35*n^3 + 55*n^2 - 25*n + 6)/6.
3

%I #19 Sep 08 2022 08:45:54

%S 6,76,386,1251,3126,6606,12426,21461,34726,53376,78706,112151,155286,

%T 209826,277626,360681,461126,581236,723426,890251,1084406,1308726,

%U 1566186,1859901,2193126,2569256,2991826,3464511,3991126,4575626

%N a(n) = (35*n^4 - 35*n^3 + 55*n^2 - 25*n + 6)/6.

%C Second bisection of A175898.

%H Vincenzo Librandi, <a href="/A181343/b181343.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).

%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + 140 for n > 4; a(1)=6, a(2)=76, a(3)=386, a(4)=1251.

%F G.f.: x*(6 + 46*x + 66*x^2 + 21*x^3 + x^4)/(1-x)^5.

%F a(-n+1) = A181342(n). - _Bruno Berselli_, Aug 23 2011

%t LinearRecurrence[{5,-10,10,-5,1},{6,76,386,1251,3126},30] (* _Harvey P. Dale_, Dec 06 2016 *)

%o (Magma) [ (35*n^4-35*n^3+55*n^2-25*n+6)/6: n in [1..30] ];

%o (PARI) a(n)=(35*n^4-35*n^3+55*n^2-25*n+6)/6 \\ _Charles R Greathouse IV_, Jul 06 2017

%Y Cf. A175898, A181342.

%K nonn,easy

%O 1,1

%A _Klaus Brockhaus_, Oct 14 2010