This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A181315 G.f. A(x) satisfies A(x) = Product_{n>=1} (1 + x^n*A(x)^n). 8
 1, 1, 2, 6, 19, 64, 227, 832, 3125, 11970, 46579, 183614, 731688, 2942673, 11928707, 48688888, 199932987, 825379993, 3423614756, 14261439594, 59635806865, 250241613688, 1053380320889, 4446989542144, 18823433444211, 79871578901283 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..1000 FORMULA G.f.: A(x) = Sum_{n>=0} A000009(n)*x^n*A(x)^n, where A000009(n) is the number of partitions of n into distinct parts. G.f.: A(x) = (1/x)*Series_Reversion[x^(1/24)*eta(x)/eta(x^2)] (cf. A081362). G.f. satisfies A(x) = exp( Sum_{n>=1} (x^n/n)*A(x)^n/(1 - (x*A(x))^(2*n)) ). a(n) ~ c * d^n / n^(3/2), where d = A270914 = 4.50247674761735448773859393270078440676312875609162163346454... and c = 0.482420439587319764659364391266849418507665645926542970519109122... - Vaclav Kotesovec, Aug 21 2018 EXAMPLE G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 19*x^4 + 64*x^5 + 227*x^6 +... The g.f. A = A(x) satisfies log(A) = x*A/(1-x^2*A^2) + (x^2/2)*A^2/(1-x^4*A^4) + (x^3/3)*A^3/(1-x^6*A^6) +... MAPLE nmax:=25: kmax:=nmax: for n from 1 to nmax+1 do A(x):=add(a(k)*x^k, k=0..kmax-1): A(x) := product((1 + x^k*A(x)^k), k=1..kmax+1): a(n-1):=coeff(A(x), x, n-1): od: seq(a(n), n=0..nmax); # Johannes W. Meijer, Jul 04 2011 MATHEMATICA InverseSeries[x QPochhammer[x, x^2] + O[x]^30][[3]] (* Vladimir Reshetnikov, Nov 21 2016 *) PROG (PARI) {a(n)=polcoeff(1/x*serreverse(x/prod(k=1, n+1, 1+x^k+x*O(x^n))), n)} (PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (x*A+x*O(x^n))^m/(1-(x*A)^(2*m))/m))); polcoeff(A, n)} CROSSREFS Cf. A000009, A081362, A109085. Sequence in context: A119370 A192738 A192728 * A181734 A216447 A069728 Adjacent sequences:  A181312 A181313 A181314 * A181316 A181317 A181318 KEYWORD nonn AUTHOR Paul D. Hanna, Oct 16 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 23 19:33 EDT 2019. Contains 325263 sequences. (Running on oeis4.)