%I #3 Mar 31 2012 12:35:49
%S 16,256,2500,28561,337561,3857296,44408896,512750736,5909458129,
%T 68121522001,785456787600,9055597599504,104402987257284,
%U 1203692301444361,13877652596295601,159998643202876416,1844662908618342400
%N Number of nX4 binary matrices with no three 1's adjacent in a line diagonally or antidiagonally
%C Column 4 of A181217
%H R. H. Hardin, <a href="/A181215/b181215.txt">Table of n, a(n) for n=1..225</a>
%F Empirical: a(n)=11*a(n-1)+16*a(n-2)-24*a(n-3)-906*a(n-4)-2624*a(n-5)+11414*a(n-6)+14042*a(n-7)+444*a(n-8)-92598*a(n-9)-52264*a(n-10)+100166*a(n-11)+77798*a(n-12)-14516*a(n-13)-50238*a(n-14)+950832*a(n-15)-91514*a(n-16)-1551794*a(n-17)-699816*a(n-18)+414094*a(n-19)+1438537*a(n-20)+72931*a(n-21)-647214*a(n-22)+142392*a(n-23)+31008*a(n-24)-44992*a(n-25)+6816*a(n-26)+2496*a(n-27)-256*a(n-28)
%e Some avoided solutions for 3X4
%e ..1..1..0..0....1..0..1..0....0..0..0..1....0..0..0..1....1..0..0..0
%e ..0..0..1..0....0..1..0..0....1..0..1..0....0..0..1..0....0..1..0..0
%e ..0..0..0..1....0..0..1..0....0..1..0..0....0..1..1..0....0..1..1..0
%K nonn
%O 1,1
%A _R. H. Hardin_ Oct 10 2010