The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A181208 Number of n X 4 binary matrices with no two 1's adjacent diagonally or antidiagonally. 1
 16, 64, 484, 2704, 17424, 104976, 652864, 4000000, 24681024, 151782400, 934891776, 5754132736, 35428274176, 218096472064, 1342706197504, 8266039005184, 50888705511424, 313286601609216, 1928696564957184, 11873676328960000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Column 4 of A181212. LINKS Robert Israel, Table of n, a(n) for n = 1..1265 (n = 1..325 from R. H. Hardin) Robert Israel, Maple-assisted proof of formula FORMULA Empirical: a(n) = 6*a(n-1) + 8*a(n-2) - 48*a(n-3) + 24*a(n-4) + 32*a(n-5) - 16*a(n-6). Formula confirmed by Robert Israel, Dec 25 2017 (see link). G.f.: 4*x*(4 - 8*x - 7*x^2 + 14*x^3 + 4*x^4 - 4*x^5) / ((1 - 8*x + 12*x^2 - 4*x^3)*(1 + 2*x - 4*x^2 - 4*x^3)). - Colin Barker, Mar 26 2018 MAPLE f:= gfun:-rectoproc({a(n)=6*a(n-1)+8*a(n-2)-48*a(n-3)+24*a(n-4)+32*a(n-5)-16*a(n-6), a(1)=16, a(2)=64, a(3)=484, a(4)=2704, a(5)=17424, a(6)=104976}, a(n), remember): map(f, [\$1..20]); # Robert Israel, Dec 25 2017 PROG (PARI) Vec(4*x*(4 - 8*x - 7*x^2 + 14*x^3 + 4*x^4 - 4*x^5) / ((1 - 8*x + 12*x^2 - 4*x^3)*(1 + 2*x - 4*x^2 - 4*x^3)) + O(x^30)) \\ Colin Barker, Mar 26 2018 CROSSREFS Cf. A181212. Sequence in context: A230970 A061449 A168091 * A175209 A141840 A203281 Adjacent sequences:  A181205 A181206 A181207 * A181209 A181210 A181211 KEYWORD nonn,easy AUTHOR R. H. Hardin, Oct 10 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 6 15:23 EDT 2020. Contains 333276 sequences. (Running on oeis4.)