Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Feb 27 2018 05:32:39
%S 1,132,49100,25097600,14083834704,8092149471168,4673805856338368,
%T 2702482348019033600,1562998915785444034816,904016986809953084011520,
%U 522876616523380188491377664,302428597238403007787949047808
%N Number of n X 7 matrices containing a permutation of 1..n*7 in increasing order rowwise, columnwise, diagonally and (downwards) antidiagonally.
%C Column 7 of A181196.
%H R. H. Hardin, <a href="/A181194/b181194.txt">Table of n, a(n) for n=1..100</a>
%F Empirical: a(n) = 720*a(n-1) - 84448*a(n-2) + 1503360*a(n-3) - 17912224*a(n-4) - 318223104*a(n-5) + 564996096*a(n-6) + 270471168*a(n-7) - 11373824*a(n-8) + 65536*a(n-9).
%F Empirical g.f.: x*(1 - 588*x + 38508*x^2 - 610624*x^3 - 20571792*x^4 + 98269760*x^5 + 112896832*x^6 - 6488576*x^7 + 57344*x^8) / ((1 - 2*x)*(1 - 26*x + 512*x^2)*(1 - 114*x - 1156*x^2 + 8*x^3)*(1 - 578*x - 228*x^2 + 8*x^3)). - _Colin Barker_, Feb 27 2018
%e Some solutions for 4 X 7:
%e ..1..2..3..4..5..6..7....1..2..3..4..5..7.10....1..2..3..4..5..7.10
%e ..8..9.10.11.12.13.14....6..8..9.12.13.15.19....6..8..9.12.13.15.19
%e .15.16.17.18.19.20.21...11.14.17.18.20.22.24...11.14.17.18.20.22.25
%e .22.23.24.25.26.27.28...16.21.23.25.26.27.28...16.21.23.24.26.27.28
%Y Cf. A181196.
%K nonn
%O 1,2
%A _R. H. Hardin_, Oct 10 2010