login
A181110
Decimal expansion of 1/zeta(2) - 1/e^gamma, where gamma is the Euler-Mascheroni constant and zeta(2) = Pi^2/6.
1
0, 4, 6, 4, 6, 7, 6, 1, 8, 2, 8, 7, 1, 4, 1, 4, 5, 8, 8, 3, 9, 1, 3, 3, 5, 6, 4, 4, 6, 7, 4, 8, 5, 0, 4, 6, 6, 6, 0, 4, 4, 2, 2, 6, 1, 1, 0, 8, 3, 2, 6, 1, 2, 4, 9, 1, 9, 4, 9, 5, 1, 1, 5, 3, 1, 9, 9, 5, 0, 7, 5, 8, 6, 9, 9, 1, 2, 7, 0, 1, 0, 0, 1, 4, 3, 8, 4, 4, 8, 4, 6, 1, 9, 5, 1, 6, 6, 6, 6, 9, 1, 4
OFFSET
0,2
COMMENTS
Zeta(2) is A013661 and e^gamma is A073004.
Number theory use in Cellarosi et al., p. 9. Abstract: "We present a limit theorem describing the behavior of a probabilistic model for squarefree numbers. The limiting distribution has a density that comes from the Dickman-De Bruijn function and is constant on the interval [0,1]. We also provide estimates for the error term in the limit theorem."
LINKS
Francesco Cellarosi, Yakov G. Sinai, Non-Standard Limit Theorems in Number Theory, arXiv:1010.0035 [math.PR], 2010.
FORMULA
Equals A059956 - A080130.
EXAMPLE
0.046467618287141458839133564467485...
MATHEMATICA
Join[{0}, RealDigits[1/Zeta[2] - Exp[-EulerGamma], 10, 100][[1]]] (* G. C. Greubel, Sep 06 2018 *)
PROG
(PARI) 1/zeta(2) - exp(-Euler) \\ Charles R Greathouse IV, Mar 10 2016
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); 6/Pi(R)^2 - Exp(-EulerGamma(R)); // G. C. Greubel, Sep 06 2018
CROSSREFS
Sequence in context: A127018 A083396 A142973 * A199959 A084892 A344475
KEYWORD
cons,nonn
AUTHOR
Jonathan Vos Post, Oct 03 2010
EXTENSIONS
Offset and leading zeros normalized by R. J. Mathar, Oct 05 2010
STATUS
approved