%I
%S 2,2,2,2,5,2,19,5,19,5,257,5,827,19,73,73,7793,19,23159,73,827,257,
%T 196687,73,67931,827,23159,827,4528949,73,12717703,7793,67931,7793,
%U 563987,827,274253209,23159,563987,7793,2088145739,827,5738374519,67931
%N a(n) = prime(Fibonacci(phi(n))), where prime = A000040, Fibonacci = A000045 and phi = A000010.
%C Phi is Euler's totient function A000010.
%F a(n) = A000040(A065451(n)) = A030427(A000010(n)).  _Antti Karttunen_, Dec 06 2017
%e a(7) = 19 since prime(fib(phi(7))) = prime(fib(6)) = prime(8) = 19 that is the 8th prime.
%t f[n_] := Prime@ Fibonacci@ EulerPhi@ n; Array[f, 44] (* _Robert G. Wilson v_, Oct 02 2010 *)
%o (PARI) A181058(n) = prime(fibonacci(eulerphi(n))); \\ _Antti Karttunen_, Dec 06 2017
%Y Cf. A000010, A000040, A000045, A030427, A065451, A181056.
%K nonn
%O 1,1
%A _Carmine Suriano_, Oct 01 2010
%E More terms from _Robert G. Wilson v_, Oct 02 2010
