login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A181054 Numbers n such that Sum_{k=1..n} (-1)^(n-k)*sigma(k) is prime. 0
2, 3, 4, 6, 10, 22, 24, 32, 64, 66, 68, 92, 102, 112, 134, 168, 240, 262, 264, 270, 274, 316, 396, 442, 448, 538, 540, 542, 554, 560, 562, 582, 608, 612, 650, 652, 654, 668, 672, 786, 788, 866, 880, 924, 938, 940, 942, 948, 984, 988, 1008, 1018, 1064, 1074 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

These are the positions of primes in (-1)^(n-1)*A068762(n) = 1, 2, 2, 5, 1, 11, -3, 18, -5, 23, ... [R. J. Mathar, Nov 18 2010]

The first primes generated by the alternating sum are 2, 2, 5, 11, 23, 103, 139, 239, 859, 919, 977, 1811, 2207, 2657, ...

LINKS

Table of n, a(n) for n=1..54.

EXAMPLE

4 is in the sequence because Sum_{k=1..4} (-1)^(4-k)*sigma(k) = (-1)^3*1 + (-1)^2*3 + (-1)^1*4 + (-1)^0*7 = -1 + 3 - 4 + 7 = 5 is prime.

MAPLE

with(numtheory): for n from 1 to 2000 do:x:=sum((((-1)^(n-k))*sigma(k), k=1..n)): if type(x, prime)=true then printf(`%d, `, n):else fi:od:

PROG

(PARI) isok(n) = isprime(sum(k=1, n, (-1)^(n-k)*sigma(k))); \\ Michel Marcus, Oct 04 2017

CROSSREFS

Cf. A000203, A068762.

Sequence in context: A228863 A004047 A093912 * A134696 A151677 A304872

Adjacent sequences:  A181051 A181052 A181053 * A181055 A181056 A181057

KEYWORD

nonn

AUTHOR

Michel Lagneau, Oct 01 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 22 21:18 EDT 2019. Contains 325226 sequences. (Running on oeis4.)