login
A180951
Primes such that p(i)+p(i+1)+p(i+2) is a prime when all addends are taken modulo 10.
1
5, 7, 11, 13, 17, 23, 29, 37, 41, 43, 47, 53, 59, 67, 71, 83, 89, 97, 101, 103, 107, 109, 113, 131, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 233, 239, 251, 257, 263, 269, 277, 281, 283, 293, 307, 311, 313, 337, 347, 353
OFFSET
1,1
COMMENTS
Is also the sum of last digit of three consecutive primes resulting in a prime.
LINKS
EXAMPLE
a(5)=17 since 17 (mod10)+ 19 (mod 10)+ 23 (mod 10)= 7+9+3=19 is a prime.
MATHEMATICA
Transpose[Select[Partition[Prime[Range[100]], 3, 1], PrimeQ[ Total[ Mod[ #, 10]]]&]] [[1]] (* Harvey P. Dale, Oct 20 2014 *)
CROSSREFS
Sequence in context: A216741 A290507 A139812 * A040146 A243593 A015914
KEYWORD
nonn
AUTHOR
Carmine Suriano, Sep 27 2010
STATUS
approved