login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A180926 Numbers a(n) such that 6*a(n) and 10*a(n) are both triangular numbers. 1
0, 1, 63, 3906, 242110, 15006915, 930186621, 57656563588, 3573776755836, 221516502298245, 13730449365735355, 851066344173293766, 52752382889378478138, 3269796672797292350791, 202674641330542747270905 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Subsequence of A154293. - Michel Marcus, Jun 25 2014

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..500

Index entries for linear recurrences with constant coefficients, signature (63,-63,1).

FORMULA

a(n) = (62*a(n-1)+1+((48*a(n-1)+1)*(80*a(n-1)+1))^(1/2))/2 with a(1)=0.

G.f.: -x^2 / ((x-1)*(x^2-62*x+1)). - Colin Barker, Jun 25 2014

a(n) = (-8+(4+sqrt(15))*(31+8*sqrt(15))^(-n)-(-4+sqrt(15))*(31+8*sqrt(15))^n)/480. - Colin Barker, Mar 03 2016

MATHEMATICA

a[1] = 0; a[n_] := a[n] = (62 a[n - 1] + 1 + Sqrt[(48 a[n - 1] + 1)*(80 a[n - 1] + 1)])/2; Array[a, 14] (* Robert G. Wilson v, Sep 27 2010 *)

Rest[CoefficientList[Series[-x^2/((x - 1) (x^2 - 62 x + 1)), {x, 0, 30}], x]] (* Vincenzo Librandi, Jun 26 2014 *)

LinearRecurrence[{63, -63, 1}, {0, 1, 63}, 20] (* Harvey P. Dale, Dec 25 2019 *)

PROG

(PARI) isok(n) = ispolygonal(6*n, 3) && ispolygonal(10*n, 3); \\ Michel Marcus, Jun 25 2014

CROSSREFS

Sequence in context: A051589 A203457 A258684 * A267963 A268028 A194484

Adjacent sequences:  A180923 A180924 A180925 * A180927 A180928 A180929

KEYWORD

easy,nonn

AUTHOR

Vladimir Pletser, Sep 25 2010

EXTENSIONS

a(8) onwards from Robert G. Wilson v, Sep 27 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 2 19:18 EST 2021. Contains 341756 sequences. (Running on oeis4.)