login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Lassalle's sequence connected with Catalan numbers and Narayana polynomials.
12

%I #63 Apr 24 2020 02:09:27

%S 1,1,5,56,1092,32670,1387815,79389310,5882844968,548129834616,

%T 62720089624920,8646340208462880,1413380381699497200,

%U 270316008395632253340,59800308109377016336155,15151722444639718679892150,4359147487054262623576455600

%N Lassalle's sequence connected with Catalan numbers and Narayana polynomials.

%C Defined by the recurrence formula in Theorem 1, page 2 of Lasalle.

%C From _Tom Copeland_, Jan 26 2016: (Start)

%C Let G(t) = Sum_{n>=0} t^(2n)/(n!(n+1)!) = exp(c.t) be the e.g.f. of the aerated Catalan numbers c_n of A126120.

%C R = x + H(D) = x + d/dD log[G(D)] = x + D - D^3/3! + 5 D^5/5! - 56 D^7/7! + ... = x + e^(r. D) generates a signed, aerated version of this entry's sequence a(n), (r.)^(2n+1) = r(2n+1) = (-1)^n a(n+1) for n>=0 and r(0) = a(0) = 0, and is, with D = d/dx, the raising operator for the Appell polynomials P(n,x) of A097610, where P(n,x) = (c. + x)^n = Sum{k=0 to n} binomial(n,k) c_k x^(n-k) with c_k = A126120(k), i.e., R P(n,x) = P(n+1,x).

%C d/dt log[G(t)] = e^(r.t) = e^(q.t) / e^(c.t) = Ev[c. e^(c.t)] / Ev[e^(c.t)] = e^(q.t) e^(d.t) = [Sum_{n>=0} 2n t^(2n-1)/(n!(n+1)!)] / [Sum_{n>=0} t^(2n)/(n!(n+1)!)] with Ev[..] denoting umbral evaluation, so q(n) = c(n+1) = A126120(n+1) and d(2n) = (-1)^n A238390(n) and vanishes otherwise. Then (r. + c.)^n = q(n) = Sum_{k=0..n} binomial(n,k) r(k) c(n-k) and (q. + d.)^n = r(n), relating A180874, A126120 (A000108), and A238390 through binomial convolutions.

%C The sequence can also be represented in terms of the Faber polynomials of A263916 as a(n) = |(2n-1)! F(2n,0,b(2),0,b(4),0,..)| = |h(2n)| where b(2n) = 1/(n!(n + 1)!) = A126120(2n)/(2n)! = A000108(n)/(2n)!, giving h(0) = 1, h(1) = 0, h(2) = 1, h(3) = 0, h(4) = -1, h(5) = 0, h(6) = 5, h(7) = 0, h(8) = -56, ..., implying, among other relations, that A000108(n/2)= A126120(n) = Bell(n,0,h(2),0,h(4),...), the Bell polynomials of A036040 which reduce to A257490 in this case.

%C (End)

%C From _Colin Defant_, Sep 06 2018: (Start)

%C a(n) is the number of pairs (rho,r), where rho is a matching on [2n] and r is an acyclic orientation of the crossing graph of rho in which the block containing 1 is the only source (see the Josuat-Verges paper or the Defant-Engen-Miller paper for definitions).

%C a(n) is the number of permutations of [2n-1] that have exactly 1 preimage under West's stack-sorting map.

%C a(n) is the number of valid hook configurations of permutations of [2n-1] that have n-1 hooks (see the paper by Defant, Engen, and Miller for definitions).

%C Say a binary tree is full if every vertex has either 0 or 2 children. If u is a left child in such a tree, then we can start at the sibling of u and travel down left edges until reaching a leaf v. Call v the leftmost nephew of u. A decreasing binary plane tree on [m] is a binary plane tree labeled with the elements of [m] in which every nonroot vertex has a label that is smaller than the label of its parent. a(n) is the number of full decreasing binary plane trees on [2n-1] in which every left child has a label that is larger than the label of its leftmost nephew.

%C (End)

%H G. C. Greubel, <a href="/A180874/b180874.txt">Table of n, a(n) for n = 1..250</a>

%H Colin Defant, <a href="https://arxiv.org/abs/1904.02613">Descents in t-Sorted Permutations</a>, arXiv:1904.02613 [math.CO], 2019.

%H Colin Defant, Michael Engen, and Jordan A. Miller, <a href="https://arxiv.org/abs/1809.01340">Stack-sorting, set partitions, and Lassalle's sequence</a>, arXiv:1809.01340 [math.CO], 2018.

%H Colin Defant, <a href="https://arxiv.org/abs/1904.02627">Catalan Intervals and Uniquely Sorted Permutations</a>, arXiv:1904.02627 [math.CO], 2019.

%H Colin Defant, <a href="https://arxiv.org/abs/2004.11367">Troupes, Cumulants, and Stack-Sorting</a>, arXiv:2004.11367 [math.CO], 2020. See p. 37.

%H Matthieu Josuat-Verges, <a href="https://arxiv.org/abs/1203.3157">Cumulants of the q-semicircular law, Tutte polynomials, and heaps</a>, arXiv:1203.3157 [math.CO], 2012.

%H Michel Lassalle, <a href="http://arxiv.org/abs/1009.4225">Catalan numbers and a new integer sequence</a>, arXiv:1009.4225 [math.CO], 2010-2012.

%H Michel Lassalle, <a href="https://doi.org/10.1016/j.jcta.2012.01.002">Two integer sequences related to Catalan numbers</a>, Journal of Combinatorial Theory, Series A, Volume 119, Issue 4, May 2012, Pages 923-935.

%H Hanna Mularczyk, <a href="https://arxiv.org/abs/1908.04025">Lattice Paths and Pattern-Avoiding Uniquely Sorted Permutations</a>, arXiv:1908.04025 [math.CO], 2019.

%F a(n) = (-1)^(n-1) * (C(n)+Sum_{j=1..n-1} (-1)^j *binomial(2n-1,2j-1) * a(j) *C(n-j)), where C() = A000108(). - _R. J. Mathar_, Apr 17 2011, corrected by _Vaclav Kotesovec_, Feb 28 2014

%F E.g.f.: Sum_{k>=0} a(k)*x^(2*k+2)/(2*k+2)! = log(x/BesselJ(1,2*x)). - _Sergei N. Gladkovskii_, Dec 28 2011

%F a(n) ~ (n!)^2 / (sqrt(Pi) * n^(3/2) * r^n), where r = BesselJZero[1, 1]^2/16 = 0.917623165132743328576236110539381686855099186384686... - _Vaclav Kotesovec_, added Feb 28 2014, updated Mar 01 2014

%F Define E(m,n) by E(1,1) = 1, E(n,n) = 0 for n > 1, and E(m,n) = Sum_{j=1..m} Sum_{i=1..n-m-1} binomial(n-m-1,i-1) * F_j(i+j-1) * F_{m-j}(n-j-i) for 0 <= m < n, where F_m(n) = Sum_{j=m..n} E_j(n). Then a(n) = F_0(2n-1). - _Colin Defant_, Sep 06 2018

%p A000108 := proc(n) binomial(2*n,n)/(1+n) ; end proc:

%p A180874 := proc(n) option remember; if n = 1 then 1; else A000108(n)+add((-1)^j*binomial(2*n-1,2*j-1)*procname(j)*A000108(n-j),j=1..n-1) ; %*(-1)^(n-1) ; end if; end proc: # _R. J. Mathar_, Apr 16 2011

%t nmax=20; a = ConstantArray[0,nmax]; a[[1]]=1; Do[a[[n]] = (-1)^(n-1)*(Binomial[2*n,n]/(n+1) + Sum[(-1)^j*Binomial[2n-1,2j-1]*a[[j]]* Binomial[2*(n-j),n-j]/(n-j+1),{j,1,n-1}]),{n,2,nmax}]; a (* _Vaclav Kotesovec_, Feb 28 2014 *)

%Y Cf. A000108, A001263, A188664, A115369.

%Y Cf. A036040, A097610, A126120, A238390, A263916, A257490.

%K nonn,easy

%O 1,3

%A _Jonathan Vos Post_, Sep 22 2010