Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jun 23 2021 09:05:35
%S 0,0,7,2,9,7,3,4,8,1,3,0,0,3,1,8,3,2,1,2,8,9,5,6,9,2,2,6,0,1,3,1,6,3,
%T 7,7,2,3,8,2,3,3,5,9,2,2,5,4,6,6,7,7,9,2,5,9,8,8,0,1,5,4,0,1,9,3,3,1,
%U 5,4,9,9,0,8,6,6,2,0,3,1,6,2,2,2,8,2,7,4,9,7,6,0,9,1,7,4,0,3,7,2,0,6,4,0,3
%N Decimal expansion of Wyler's constant.
%C Named after the Swiss mathematician Armand Wyler. - _Amiram Eldar_, Jun 23 2021
%D Armand Wyler, L'Espace Symetrique du Groupe des Equations de Maxwell, Comptes Rendus de l'Académie des Sciences, Sér. A-B, Vol. 269 (1969), pp. 743-745.
%D Armand Wyler, Les groupes des potentiels de Coulomb et de Yukawa, Comptes Rendus de l'Académie des Sciences, Sér. A, Vol. 271 (1971), pp. 186-188.
%H Gloria B. Lubkin, <a href="https://doi.org/10.1063/1.3022875">A Mathematician's Version of the Fine-Structure Constant</a>, Physics Today, Vol. 24, No. 8 (1971), pp. 17-19.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/WylersConstant.html">Wyler's Constant</a>.
%F Equals (3*3^(3/4))/(16*2^(3/4)*5^(1/4)*Pi^(11/4)).
%e 0.00729734813003183212...
%t Join[{0,0},RealDigits[(3*Surd[3^3,4])/(16*Surd[2^3,4]*Surd[5,4]*Surd[Pi^11,4]),10,120][[1]]] (* _Harvey P. Dale_, Dec 19 2016 *)
%Y Cf. A180873.
%K nonn,cons
%O 0,3
%A _Eric W. Weisstein_, Sep 22 2010