login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A180856 Triangle read by rows: T(n,k) is the number of unordered pairs of nodes at distance k in the Moebius ladder M(n) (entries in row n are the coefficients of the corresponding Wiener polynomial). The Moebius ladder M(n) (n>=3) is the graph obtained from the cycle graph C(2n) by adding new edges joining each pair of opposite nodes. 1
9, 6, 12, 16, 15, 20, 10, 18, 24, 24, 21, 28, 28, 14, 24, 32, 32, 32, 27, 36, 36, 36, 18, 30, 40, 40, 40, 40, 33, 44, 44, 44, 44, 22, 36, 48, 48, 48, 48, 48, 39, 52, 52, 52, 52, 52, 26, 42, 56, 56, 56, 56, 56, 56, 45, 60, 60, 60, 60, 60, 60, 30, 48, 64, 64, 64, 64, 64, 64, 64 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,1

COMMENTS

Row n contains floor((n+1)/2) entries.

Sum of entries in row n is n(2n-1)=A000384(n).

T(n,1)=3n = number of edges in the corresponding graph.

Sum(k*T(n,k), k>=1) = A180857(n).

REFERENCES

N. Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993.

B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969.

LINKS

Table of n, a(n) for n=3..72.

Eric Weisstein's World of Mathematics, Moebius Ladder.

FORMULA

The generating polynomial for row 2n+1 is n[3t+2t^{(n+1)/2}+4t^2*sum(t^j, j=0..(m-5)/2)] and for row 2n it is n[3t+4t^2*sum(t^j, j=0..(n-4)/2)] (these are also the Wiener polynomials of the corresponding Moebius ladders).

EXAMPLE

Triangle starts:

9,6;

12,16;

15,20,10;

18,24,24;

21,28,28,14;

24,32,32,32;

MAPLE

s := proc (m) options operator, arrow: sum(t^j, j = 0 .. m-2) end proc: P := proc (m) if `mod`(m, 2) = 0 then sort(expand(simplify(m*(3*t+4*t^2*s((1/2)*m))))) else sort(expand(simplify(m*(3*t+4*t^2*s((1/2)*m-1/2)+2*t^((1/2)*m+1/2))))) end if end proc: for m from 3 to 16 do P(m) end do: for n from 3 to 16 do seq(coeff(P(n), t, i), i = 1 .. floor((n+1)*1/2)) end do; # yields sequence in triangular form

CROSSREFS

Cf. A000384, A180857

Sequence in context: A063602 A180572 A182873 * A166520 A102648 A040074

Adjacent sequences:  A180853 A180854 A180855 * A180857 A180858 A180859

KEYWORD

nonn,tabf

AUTHOR

Emeric Deutsch, Sep 24 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 22 21:10 EST 2014. Contains 252372 sequences.