login
Number of distinct solutions of sum{i=1..8}(x(2i-1)*x(2i)) = 0 (mod n), with x() in 0..n-1
1

%I #4 Mar 31 2012 12:35:46

%S 1,25,435,6302,63988,526152,3362296,18294610,83656074,340334735,

%T 1222011919,4033921144,12105114076,34125015671,89380952993,

%U 223056939011,524533055884,1188931232028,2564070855994,5372508105333,10797948228909

%N Number of distinct solutions of sum{i=1..8}(x(2i-1)*x(2i)) = 0 (mod n), with x() in 0..n-1

%C Column 8 of A180803

%H R. H. Hardin, <a href="/A180800/b180800.txt">Table of n, a(n) for n=1..183</a>

%e Solutions for sum of products of 8 0..1 pairs = 0 (mod 2) are

%e (0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0)

%e (0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1)

%e (0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1)

%e (0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 1*1)

%e (0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1)

%e (0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1)

%e (0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 1*1 + 1*1)

%e (0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 1*1 + 1*1)

%e (0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 1*1 + 1*1 + 1*1)

%e (0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1)

%e (0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1)

%e (0*0 + 0*0 + 0*0 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1)

%e (0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1)

%e (0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1)

%e (0*0 + 0*0 + 0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1)

%e (0*0 + 0*0 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)

%e (0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1)

%e (0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1)

%e (0*0 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1)

%e (0*0 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)

%e (0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1)

%e (0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1)

%e (0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1)

%e (0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)

%e (1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)

%K nonn

%O 1,2

%A _R. H. Hardin_, suggested by _Max Alekseyev_ in the Sequence Fans Mailing List, Sep 20 2010