This site is supported by donations to The OEIS Foundation.

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A180798 Number of distinct solutions of sum{i=1..6}(x(2i-1)*x(2i)) = 0 (mod n), with x() in 0..n-1 1
 1, 16, 159, 1336, 7770, 39768, 158242, 576277, 1770957, 5103172, 13020114, 32106338, 71312200, 155419661, 313496424, 622375358, 1154635735, 2140048203, 3718742275, 6493401148, 10741764465, 17813177343, 28173574540, 45107483725 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Column 6 of A180803 LINKS R. H. Hardin, Table of n, a(n) for n=1..183 EXAMPLE Solutions for sum of products of 6 0..1 pairs = 0 (mod 2) are (0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0) (0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1) (0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1) (0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 1*1) (0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1) (0*0 + 0*0 + 0*0 + 0*1 + 1*1 + 1*1) (0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1) (0*0 + 0*0 + 0*1 + 0*1 + 1*1 + 1*1) (0*0 + 0*0 + 1*1 + 1*1 + 1*1 + 1*1) (0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1) (0*0 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1) (0*0 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1) (0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1) (0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1) (0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1) (1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1) CROSSREFS Sequence in context: A101931 A220630 A041005 * A144453 A121036 A224058 Adjacent sequences:  A180795 A180796 A180797 * A180799 A180800 A180801 KEYWORD nonn AUTHOR R. H. Hardin, suggested by Max Alekseyev in the Sequence Fans Mailing List, Sep 20 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .