OFFSET
0,3
COMMENTS
Compare the g.f. of this sequence to the g.f.s:
. exp( Sum_{n>=0} [Sum_{k=0..n} C(n,k)^2*x^k]*x^n/n ) = (G(x)-1)/x where G(x) = g.f. of A004148.
. exp( Sum_{n>=0} [Sum_{k=0..n} C(n,k)*x^k]^2*x^n/n ) = 1/(1-x*(1+x)^2).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..900
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 8*x^3 + 25*x^4 + 80*x^5 + 271*x^6 +...
The logarithm (A180719) begins:
log(A(x)) = x + 5*x^2/2 + 16*x^3/3 + 61*x^4/4 + 226*x^5/5 + 884*x^6/6 + 3543*x^7/7 + 14429*x^8/8 +...
which equals the sum of the series:
log(A(x)) = (1 + x)^2*x
+ (1 + 4*x + x^2)^2*x^2/2
+ (1 + 9*x + 9*x^2 + x^3)^2*x^3/3
+ (1 + 16*x + 36*x^2 + 16*x^3 + x^4)^2*x^4/4
+ (1 + 25*x + 100*x^2 + 100*x^3 + 25*x^4 + x^5)^2*x^5/5
+ (1 + 36*x + 225*x^2 + 400*x^3 + 225*x^4 + 36*x^5 + x^6)^2*x^6/6 +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m, k)^2*x^k)^2*x^m/m)+x*O(x^n)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 24 2010
STATUS
approved