login
A180674
a(n) = Fibonacci(n+9) - Fibonacci(9).
5
0, 21, 55, 110, 199, 343, 576, 953, 1563, 2550, 4147, 6731, 10912, 17677, 28623, 46334, 74991, 121359, 196384, 317777, 514195, 832006, 1346235, 2178275, 3524544, 5702853, 9227431, 14930318, 24157783, 39088135, 63245952, 102334121
OFFSET
0,2
COMMENTS
The a(n+1) (terms doubled) are the Kn18 sums of the Fibonacci(n) triangle A104763. See A180662 for information about these knight and other chess sums.
FORMULA
a(n) = F(n+9) - F(9) with F = A000045.
a(n) = a(n-1) + a(n-2) + 34 for n>1, a(0)=0, a(1)=21, and where 34 = F(9).
G.f.: x*(21 + 13*x)/((1 - x)*(1 - x - x^2)). - Ilya Gutkovskiy, Feb 24 2017
a(n) = 21*A000071(n+2) + 13*A000071(n+1). - Bruno Berselli, Feb 24 2017
From Colin Barker, Feb 24 2017: (Start)
a(n) = (-34 + (2^(-n)*((1-sqrt(5))^n*(-38+17*sqrt(5)) + (1+sqrt(5))^n*(38+17*sqrt(5)))) / sqrt(5)).
a(n) = 2*a(n-1) - a(n-3) for n>2. (End)
MAPLE
nmax:=31: with(combinat): for n from 0 to nmax do a(n):=fibonacci(n+9)-fibonacci(9) od: seq(a(n), n=0..nmax);
MATHEMATICA
Fibonacci[9 +Range[0, 40]] -34 (* G. C. Greubel, Jul 13 2019 *)
LinearRecurrence[{2, 0, -1}, {0, 21, 55}, 40] (* Harvey P. Dale, Aug 24 2024 *)
PROG
(Magma) [Fibonacci(n+9) - Fibonacci(9): n in [0..40]]; // Vincenzo Librandi, Apr 24 2011
(PARI) concat(0, Vec(x*(21+13*x)/((1-x)*(1-x-x^2)) + O(x^40))) \\ Colin Barker, Feb 24 2017
(PARI) a(n) = fibonacci(n+9) - fibonacci(9) \\ Charles R Greathouse IV, Feb 24 2017
(Sage) [fibonacci(n+9)-34 for n in (0..40)] # G. C. Greubel, Jul 13 2019
(GAP) List([0..40], n-> Fibonacci(n+9)-34); # G. C. Greubel, Jul 13 2019
CROSSREFS
Cf. A131524 (Kn11), A001911 (Kn12), A006327 (Kn13), A167616 (Kn14), A180671 (Kn15), A180672 (Kn16), A180673 (Kn17), A180674 (Kn18).
Sequence in context: A144302 A347373 A354162 * A067431 A083676 A264104
KEYWORD
nonn,easy
AUTHOR
Johannes W. Meijer, Sep 21 2010
STATUS
approved