login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A180669 a(n) = a(n-1)+a(n-2)+a(n-3)+4*n^2-16*n+18 with a(0)=0, a(1)=0 and a(2)=1. 5
0, 0, 1, 7, 26, 72, 171, 371, 760, 1500, 2889, 5475, 10266, 19116, 35435, 65495, 120832, 222664, 410017, 754671, 1388650, 2554784, 4699707, 8644907, 15901336, 29248068, 53796617, 98948523, 181995914, 334743972, 615691547 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

The a(n+2) represent the Kn14 and Kn24 sums of the square array of Delannoy numbers A008288. See A180662 for the definition of these knight and other chess sums.

LINKS

Table of n, a(n) for n=0..30.

Index entries for linear recurrences with constant coefficients, signature (4, -5, 2, -1, 2, -1).

FORMULA

a(n) = a(n-1)+a(n-2)+a(n-3)+4*(n-2)^2+2 with a(0)=0, a(1)=0 and a(2)=1.

a(n) = a(n-1)+A001590(n+5)-2-4*n with a(0)=0.

a(n) = sum(A005899(m)*A000073(n-m),m=0..n).

a(n+2) = add(A008288(n-k+3,k+3),k=0..floor(n/2)).

GF(x) = (x^2*(1+x)^3)/((1-x)^3*(1-x-x^2-x^3)).

Contribution from Bruno Berselli, Sep 23 2010: (Start)

a(n) = 3*a(n-1)-2a(n-2)-a(n-4)+a(n-5)+8 for n>4.

a(n)-4*a(n-1)+5a(n-2)-2*a(n-3)+a(n-4)-2*a(n-5)+a(n-6) = 0 for n>5. (End)

MAPLE

nmax:=30: a(0):=0: a(1):=0: a(2):=1: for n from 3 to nmax do a(n):= a(n-1)+a(n-2)+a(n-3)+4*(n-2)^2+2 od: seq(a(n), n=0..nmax);

CROSSREFS

Cf. A000073 (Kn11 & Kn21), A089068 (Kn12 & Kn22), A180668 (Kn13 & Kn23), A180669 (Kn14 & Kn24), A180670 (Kn15 & Kn25).

Sequence in context: A006325 A053346 A227021 * A027964 A183957 A078501

Adjacent sequences:  A180666 A180667 A180668 * A180670 A180671 A180672

KEYWORD

easy,nonn

AUTHOR

Johannes W. Meijer, Sep 21 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 09:52 EST 2019. Contains 319363 sequences. (Running on oeis4.)