login
A180655
Semiprimes (products of two distinct primes) of the form, next perfect square minus semiprime equals perfect square.
1
15, 21, 35, 55, 65, 77, 91, 143, 187, 209, 221, 247, 299, 323, 391, 437, 493, 551, 589, 667, 713, 851, 899, 1073, 1147, 1189, 1247, 1271, 1333, 1457, 1517, 1591, 1739, 1763, 1927, 1961, 2021, 2173, 2279, 2419, 2491, 2501, 2537, 2623, 2773, 2867, 3127, 3149
OFFSET
1,1
EXAMPLE
3*5=15,16-15=1; 3*7=21;25-21=4->2; 5*13=65,81-65=16->4;...
MATHEMATICA
f1[n_]:=Last/@FactorInteger[n]=={1, 1}; f2[n_]:=IntegerQ[Sqrt[Ceiling[Sqrt[n]]^2-n]]; lst={}; Do[If[f1[n]&&f2[n], AppendTo[lst, n]], {n, 3*7!}]; lst
spQ[n_]:=Module[{nps=Ceiling[Sqrt[n]]^2}, PrimeNu[n]==PrimeOmega[n] == 2 && IntegerQ[Sqrt[nps-n]]]; Select[Range[3200], spQ] (* Harvey P. Dale, Aug 17 2012 *)
CROSSREFS
Sequence in context: A081934 A095147 A081977 * A254365 A335674 A349096
KEYWORD
nonn
AUTHOR
STATUS
approved