login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A180572 Triangle read by rows: T(n,k) is the number of unordered pairs of vertices at distance k in the circular ladder P_2 X C_n (also called a prism), where P_2 is the path graph on 2 nodes and C_n is the cycle graph on n nodes. 1
9, 6, 12, 12, 4, 15, 20, 10, 18, 24, 18, 6, 21, 28, 28, 14, 24, 32, 32, 24, 8, 27, 36, 36, 36, 18, 30, 40, 40, 40, 30, 10, 33, 44, 44, 44, 44, 22, 36, 48, 48, 48, 48, 36, 12, 39, 52, 52, 52, 52, 52, 26, 42, 56, 56, 56, 56, 56, 42, 14, 45, 60, 60, 60, 60, 60, 60, 30, 48, 64, 64 (list; graph; refs; listen; history; text; internal format)
OFFSET
3,1
COMMENTS
Row n contains 1 + floor(n/2) entries.
Sum of entries in row n = n(2n-1) = A000384(n).
T(n,1) = 3n = number of edges in the corresponding graph.
Sum_{k>=1} k*T(n,k) = A138179(n).
The generating polynomial of row n (i.e., the Wiener polynomial of the circular ladder of order n) has been obtained from the Wiener polynomial of the cycle C_n (see the Sagan et al. paper) and by determining the distribution of the distances from the nodes of one cycle to the nodes of the other cycle. They can also be derived from the Doslic paper (Corollary 11 and Lemma 1).
REFERENCES
J. Gross and J. Yellen, Graph Theory and its Applications, CRC, Boca Raton, 1999 (p. 14).
LINKS
T. Doslic, Vertex-weighted Wiener polynomials for composite graphs, Ars Mathematica Contemporanea, 1, 2008, 66-80.
B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969.
FORMULA
The generating polynomial for row 2n+1 is (2n+1)(3t+t^2-2t^{n+1}-2t^{n+2})/(1-t) and for row 2n it is 2n(3t+t^2-t^n-2t^{n+1}-t^{n+2})/(1-t) (these are also the Wiener polynomials of the corresponding circular ladders).
The bivariate g.f. G=G(t,z) appears in the Maple program.
EXAMPLE
T(3,2)=6 because in P_2 X C_3 there are six unordered pairs of nodes at distance 2 (from the vertices of the outer triangle to the "opposite" vertices of the inner triangle).
Triangle starts:
9, 6;
12, 12, 4;
15, 20, 10;
18, 24, 18, 6;
21, 28, 28, 14;
MAPLE
G := t*z^3*(9+6*t-6*z+4*t^2*z-16*t*z^2-10*t^2*z^2+8*t*z^3 +2*t^2*z^3 -2*t^3*z^3 +7*t^2*z^4+4*t^3*z^4-4*t^2*z^5-2*t^3*z^5) / ((1-z)^2*(1-t*z^2)^2): Gser := simplify(series(G, z = 0, 19)): for n from 3 to 16 do P[n] := sort(expand(coeff(Gser, z, n))) end do: for n from 3 to 16 do seq(coeff(P[n], t, j), j = 1 .. 1+floor((1/2)*n)) end do; # yields sequence in triangular form
CROSSREFS
Sequence in context: A137907 A070164 A063602 * A182873 A180856 A166520
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Sep 16 2010
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 04:42 EDT 2024. Contains 371964 sequences. (Running on oeis4.)