OFFSET
1,2
COMMENTS
The first column is the factorial, A000142.
The second column forms coefficients of Laguerre polynomials, A001810.
From Arvind Ayyer, Mar 15 2018: (Start)
Consider the row generating function A_n(x) = sum_k a(n,k) x^k. Then
A_n(0) = n!, A000142.
A_n(1) = number of ASM's, A005130.
A_n(2) = number of domino tilings of the Aztec diamond, A006125.
A_n(3) = 3-enumeration of n X n alternating-sign matrices, A059477. (End)
LINKS
FindStat - Combinatorial Statistic Finder, The number of entries equal to negative one in the alternating sign matrix
Florent Le Gac, Quelques problèmes d’énumération autour des matrices à signes alternants, thesis, LaBRI Bordeaux, 2011.
Wikipedia, Alternating Sign Matrix
EXAMPLE
In triangular format, the numbers of ASMs is as follows:
n=1:1
n=2:2
n=3:6,1
n=4:24,16,2
n=5:120,200,94,14,1
n=6:720,2400,2684,1284,310,36,2
n=7:5040,29400,63308,66158,38390,13037,2660,328,26,1
CROSSREFS
KEYWORD
nonn,hard,tabf
AUTHOR
Arvind Ayyer, Jan 20 2011
EXTENSIONS
T(7, 7) corrected by Arvind Ayyer, Feb 12 2018
STATUS
approved