login
Smallest pandigital number (A171102) divisible by the n-th prime A000040(n).
5

%I #17 Mar 31 2018 10:58:37

%S 1023456798,1023456789,1023467895,1023456798,1024375869,1023456798,

%T 1023457698,1023458769,1023475689,1023468957,1023458769,1023654987,

%U 1023458769,1023469875,1023467958,1023459786,1023457896,1023458976

%N Smallest pandigital number (A171102) divisible by the n-th prime A000040(n).

%C Digits may appear more than once in the multiple, resulting in 11-or-more-digit values of a(n). The first entry for which that happens is a(10545), because the smallest multiple of the 10545th prime 111119 that contains all the digits 0-9 is 92373 * 111119 = 10264395387, and all smaller primes have 10-digit pandigital multiples. - _David J. Seal_, Sep 18 2017

%H Ray Chandler, <a href="/A180489/b180489.txt">Table of n, a(n) for n=1..10000</a>

%e a(1) is the smallest pandigital number divisible by prime(1) = 2, which is 1023456798. - _David J. Seal_, Sep 18 2017

%t With[{s = Select[FromDigits@ # & /@ Permutations[Range[0, 9], {10}], # > 10^9 &]}, Table[SelectFirst[s, Divisible[#, Prime@ n] &], {n, 18}]] (* _Michael De Vlieger_, Sep 18 2017, after _Robert G. Wilson v_ at A171102 *)

%Y Cf. A050278, A061604, A171102, A274328.

%K nonn,base

%O 1,1

%A _Lekraj Beedassy_, Sep 08 2010