|
|
A180436
|
|
Palindromic numbers which are sum of consecutive squares.
|
|
3
|
|
|
1, 4, 5, 9, 55, 77, 121, 181, 313, 434, 484, 505, 545, 595, 636, 676, 818, 1001, 1111, 1441, 1771, 4334, 6446, 10201, 12321, 14641, 17371, 17871, 19691, 21712, 40804, 41214, 42924, 44444, 44944, 46564, 51015, 65756, 69696, 81818, 94249, 97679, 99199
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
In more than one way: 554455, 9343439, ... (A267600) - Robert G. Wilson v, May 28 2012
|
|
LINKS
|
Giovanni Resta, Table of n, a(n) for n = 1..10400 (terms < 10^18, first 228 terms from Robert G. Wilson v)
|
|
EXAMPLE
|
1001 is in the sequence because 1001 is palindromic and it can be written as sum of consecutive squares (1001 = 4^2 + 5^2 + 6^2 + ... + 13^2 + 14^2).
|
|
MATHEMATICA
|
palQ[n_Integer] := Block[{idn = IntegerDigits[n]}, idn == Reverse[idn]]; lst = {}; k = 1; While[k < 1000, AppendTo[lst, Select[ Accumulate[ Range[k, 1000]^2], palQ]]; lst = Union@ Flatten@ lst; k++]; Select[lst, # < 10^6 &] (* Robert G. Wilson v, May 28 2012 *)
|
|
CROSSREFS
|
Cf. A002113, A002779, A034705, A216446, A267600.
Sequence in context: A041151 A279919 A041467 * A121919 A041627 A132811
Adjacent sequences: A180433 A180434 A180435 * A180437 A180438 A180439
|
|
KEYWORD
|
nonn,easy,base
|
|
AUTHOR
|
Zhining Yang, Jan 19 2011
|
|
STATUS
|
approved
|
|
|
|