The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A180420 G.f. satisfies: A(A(x)) = x + A(2*x)^2. 0
 1, 2, 12, 160, 4592, 276496, 34174592, 8570174016, 4335215019520, 4408454839564672, 8992935435667848448, 36753720073439398166016, 300717909357395506394597376, 4923649248081508021291300507648 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS FORMULA a(n)=T(n,1), T(n,m)=1/2*(kron_delta(n,m)+ sum(j=max(0,2*m-n)..m-1, binomial(m,j)*2^(n-j)*T(n-j,2*(m-j)))-sum(k=m+1..n-1, T(n,k)*T(k,m)))), n>m, T(n,n)=1.  [Vladimir Kruchinin, May 03 2012] EXAMPLE G.f.: A(x) = x + 2*x^2 + 12*x^3 + 160*x^4 + 4592*x^5 + 276496*x^6 +... A(A(x)) = x + 4*x^2 + 32*x^3 + 448*x^4 + 11776*x^5 + 637952*x^6 +... A(x)^2 = x^2 + 4*x^3 + 28*x^4 + 368*x^5 + 9968*x^6 + 575200*x^7 +... PROG (PARI) {a(n)=local(A=x+sum(k=2, n-1, a(k)*x^k)+x*O(x^n)); if(n==1, 1, polcoeff(x+subst(A, x, 2*x)^2-subst(A, x, A), n)/2)} (Maxima) T(n, m):=( if n=m then 1 else 1/2*(kron_delta(n, m)+ sum(binomial(m, j)*2^(n-j)*T(n-j, 2*(m-j)), j, max(0, 2*m-n), m-1)-sum(T(n, k)*T(k, m), k, m+1, n-1))); makelist(T(n, 1), n, 1, 7); /* Vladimir Kruchinin, May 03 2012 */ CROSSREFS Sequence in context: A208577 A012646 A177778 * A012328 A302688 A201007 Adjacent sequences:  A180417 A180418 A180419 * A180421 A180422 A180423 KEYWORD nonn AUTHOR Paul D. Hanna, Sep 03 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 06:10 EDT 2021. Contains 343146 sequences. (Running on oeis4.)