login
a(n) = (A000111(2*p) - 1)/(2*p), where p = A000040(n) = prime(n).
1

%I #13 Apr 19 2023 09:04:15

%S 1,10,5052,14240070,3152221563324450,157195096511273995860,

%T 2374214683408467590063771983920,618146855974818638210995488847340730,

%U 144946467754033586465978879886385830380958862710

%N a(n) = (A000111(2*p) - 1)/(2*p), where p = A000040(n) = prime(n).

%C My comment in A000111 concerning A000111(2*p) mod (2*p) says that all entries are integers.

%t t = Range[0, 60]! CoefficientList[ Series[ Sec@x + Tan@x, {x, 0, 60}], x]; f[n_] := (Rest[t][[2 Prime@n]] - 1)/(2 Prime@n); Array[f, 9] (* _Robert G. Wilson v_, Sep 04 2010 *)

%o (Python)

%o from sympy import euler, prime

%o def A180419(n): return (1-euler(2*(p:=prime(n))))//p>>1 if n > 1 else 1 # _Chai Wah Wu_, Apr 18 2023

%Y Cf. A180418, A000111, A180417.

%K nonn

%O 1,2

%A _Vladimir Shevelev_, Sep 03 2010

%E a(6) onwards from _Robert G. Wilson v_, Sep 04 2010

%E Definition rephrased by _R. J. Mathar_, Sep 29 2010